Bourinet, Emmanuel, Christophe Altier, Michael E. Hildebrand, Tuan Trang, Michael W. Salter, and Gerald W. Zamponi. Calcium-Permeable Ion Channels in Pain Signaling. *Physiol Rev* 94: 81–140, 2014; doi:10.1152/physrev.00023.2013.—The correct version of **FIGURE 1** is shown below.

FIGURE 1. Ascending pain neuraxis. Pain-sensing neurons in the peripheral nervous system have their soma located in the dorsal root ganglia (DRG). These neurons have a peripheral axon innervating the distal territories (skin, viscera, etc.) where they detect painful stimuli leading to an action potential that travels along the fibers up to the DRG and then to the first relay in the dorsal spinal cord. Sensory neurons within the DRGs are diverse and can be separated based on the expression of neurotrophin receptors. The majority are TrkA- and c-Ret-positive small-diameter sensory afferents that correspond to unmyelinated C fibers mainly involved in nociception. TrkB- and TrkC-positive myelinated larger diameter afferents correspond to A\(\delta\) and A\(\alpha-\beta\) fibers, respectively. They convey touch and proprioception signals, although both of these subclasses contain nociceptive neurons. The sensory information is processed locally in neuronal circuitry within the dorsal horn of the spinal cord before being sent to the thalamus to convey nociceptive information. Following thalamic filtering, the information is sent to the cortical structures of the pain matrix.