






malemma (106). The kinase exposes a positively charged
region on its membrane-interacting face, which associates
electrostatically with the negative surface charge of the in-
ner leaflet; together with PtdSer, PtdIns(4,5)P2 is the main
contributor to this electronegativity. Interestingly, different
isoforms of type I PtdInsP5K have unique functions during
phagocytosis. Data from knockout mice and transiently
knocked-down cell lines suggest that PtdInsP5K� regulates
actin remodeling during receptor clustering, whereas
PtdInsP5K� promotes actin polymerization during pseudo-
pod extension (236). Regardless of the underlying mechanism,
the local accumulation of PtdIns(4,5)P2 is associated with, and
most likely contributes to, the localized increase in actin po-
lymerization at the base of the phagocytic cup (328).
PtdIns(4,5)P2 is known to activate actin nucleators and cross-
linkers, while simultaneously inhibiting actin-severing and
barbed end-capping proteins. Not surprisingly, depletion of
PtdIns(4,5)P2 reduces the phagocytic efficiency (77). Remark-
ably, retention of PtdIns(4,5)P2 also reduces phagocytosis
(106, 328). This seemingly paradoxical observation can be
readily explained by the need to disassemble actin to complete
particle engulfment. PtdIns(4,5)P2 catabolism during phago-
some formation and closure occurs by one of three pathways:
hydrolysis by PLC, phosphorylation by PtdIns3K, or dephos-
phorylation by 4= and 5= phosphatases.

Hydrolysis of PtdIns(4,5)P2 at the phagocytic cup is largely
attributable to PLC (FIGURE 3). Both isoforms of PLC� have
been found to localize to the phagosomal cup (39). Their
dual SH2 domains serve to recruit them to the phosphoty-
rosine residues of the activated adaptors, such as LAT.
Once at the cup, PLC� is activated via Syk-dependent phos-
phorylation and converts PtdIns(4,5)P2 into DAG and IP3.
DAG causes recruitment of C1 domain-containing pro-
teins, such as conventional and novel PKC isoforms, and IP3

induces Ca2� mobilization from the ER (206). Neither PKC
activation nor Ca2� mobilization is thought to be essential
for particle ingestion, yet pharmacological inhibition of
PLC activity ablates phagocytosis. The disappearance of the
substrate PtdIns(4,5)P2 may therefore be more important
than the generation of the products.

PtdInsP3K also contributes to the elimination of PtdIns(4,5)P2

from sites of phagocytosis, by phosphorylating its 3= posi-
tion to produce PtdIns(3,4,5)P3 (FIGURE 3). Interestingly,
inhibiting PtdInsP3K activity with wortmannin abolishes
pseudopod extension, but not the formation of the phago-
cytic cup or the accumulation of actin at its base (17). In
addition, as particle size decreases, phagocytosis becomes
progressively less dependent on PtdInsP3K activity (379).
Thus uptake of targets of diameter 	1 �m is virtually in-
sensitive to wortmannin! It is possible that large particles
need both PLC and PtdInsP3K activity to eliminate
PtdIns(4,5)P2, while smaller particles can rely on PLC
alone. Alternatively, and in our view more likely, products
of PtdInsP3K activity may be required to recycle compo-

nents of the actin machinery from the base of the cup to the
tips of pseudopods and/or to facilitate the focal exocytosis
of endomembranes that may be required to fully surround
larger targets (24, 80). Neither of these reactions may be
essential for entrapment of smaller particles.

PtdIns(3,4,5)P3 accumulates markedly in nascent phago-
somes. The accumulation seems to be confined to the cup,
without spreading to the bulk (extraphagosomal) plasma
membrane (239). How this restricted localization is at-
tained is not clear; diffusional barriers or a source-sink
mechanism may be at work. PtdIns(3,4,5)P3 seems to play
multiple roles at sites of phagocytosis: it recruits the motor
protein myosin X (81), which has been speculated to pro-
mote phagosomal closure by a purse-string mechanism. In
addition, PtdIns(3,4,5)P3 helps stabilize several PLC iso-
forms at the membrane, by interacting with their PH do-
mains (109). Finally, it generates a positive-feedback loop
by interacting with Gab2 (142). This adaptor protein helps
recruit the p85 regulatory subunit of PtdIns3K to the pha-
gosomal cup; the PtdIns(3,4,5)P3 synthesized by this kinase
in turn helps stabilize Gab2, which contains a PH domain,
at the cup.

The remnant PtdIns(4,5)P2 is eliminated by 4=- and 5=-phos-
phatases. Several 5=-phosphatases are recruited to the phago-
some. These include Inpp5B, Inpp5E, OCRL, and SHIP (7, 38,
165). PtdIns(4,5)P2 is considered the preferred substrate of the
Inpp5 isoforms and of OCRL, even though they dephosphor-
ylate PtdIns(3,4,5)P3 as well (283). In the case of SHIP,
PtdIns(3,4,5)P3 is the canonical substrate, but this phospha-
tase also displays activity against PtdIns(4,5)P2, at least in
vitro. Recent evidence indicates that knockdown of OCRL
and Inpp5B impairs the disappearance PtdIns(4,5)P2 at the
phagosomal cup (38). Moreover, when recruitment of OCRL
and Inpp5B to the membrane is prevented, invasion of host
cells by the bacterium Yersinia pseudotuberculosis is inhibited.
The (pre)vacuoles formed by Yersinia fail to seal, implying that
hydrolysis of PtdIns(4,5)P2 by the phosphatases is required for
scission (320). It remains unclear whether the PtdIns(4)P gen-
erated by the 5=-phosphatases plays an active role in the sealing
process.

The three pathways of PtdIns(4,5)P2 catabolism combine to
eliminate a major contributor to the negative surface charge
of the inner leaflet of the membrane lining the engulfed
particle. Among other effects, the reduced electronegativity
weakens the association of PtdInsP5K with the membrane
(106). Thus focal elimination of PtdIns(4,5)P2 also indi-
rectly reduces PtdIns(4,5)P2 production.

Another important negatively charged phospholipid pro-
duced at sites of phagocytosis is PtdOH (322). Accumula-
tion of PtdOH on nascent phagosomes was documented
using a fluorescent probe, although caution should be exer-
cised in interpreting these experiments (79), which used a
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domain derived from Raf1 that has proven unreliable. The
major source of PtdOH is PLD activity, which cleaves the
choline moiety off PtdCho. In phagocytes, PLD1 localizes
to late endosomes/lysosomes. It accumulates on the forming
phagosome, possibly via exocytosis directed to sites of in-
gestion, and persists during phagosome maturation (albeit
these dynamics are more obvious for transfected GFP-PLD1
than for endogenous PLD1). PLD2, on the other hand, is
constitutively at the plasmalemma and disappears once the
phagosome seals. The motifs involved in targeting PLD1
and PLD2 to different compartments are unclear. PLD1 is
palmitoylated and requires cofactors like Rho, Arf, and
PKC for optimal activity; PtdIns(3)P has additionally been
shown to affect both the localization and the activity of
PLD1. In contrast, PLD2 has basal activity independently of
any known cofactors. It can bind Grb2 and acts as a GEF
for Rac2, an important regulator of the NADPH oxidase in
phagocytes.

Early studies showed that pharmacological inhibition of
both PLD isoforms blocks phagocytosis (203). This
prompted the suggestion that PtdOH may be a key partici-
pant in phagocytosis by modulating Rac and PtdInsP5K
activity. An effect of PtdOH on membrane curvature can
also be envisaged. Subsequent experiments using dominant-
negative PLD constructs (177) and siRNA-mediated silenc-
ing (79) also support a role for PLD isoforms in particle
ingestion. On the other hand, neutrophils from knockout
mice lacking PLD1 or PLD2 perform phagocytosis nor-
mally (279). Thus the requirement for PLD remains uncer-
tain.

It is noteworthy that PtdOH could be conceivably gener-
ated also by DAG kinases. Considering the active genera-
tion of DAG at sites of phagocytosis, this alternative mech-
anism could contribute importantly to the accumulation of
PtdOH, which may have complicated the assessment of the
role of PLD and PtdOH in phagosome formation.

2. Phagosome maturation

In many ways, phagosome maturation parallels endosome
progression. After sealing, the nascent phagosome under-
goes a gradual metamorphosis, becoming first an early
phagosome and then a late phagosome that subsequently
merges with lysosomes, giving rise to the phagolysosome.
The intermediate stages include the formation of ILV, ren-
dering the late phagosome a type of MVB. Ubiquitinated
cargo, including the activating Fc�Rs themselves, is thereby
destined for degradation (208).

As during endosome progression, PtdIns(3)P and likely also
BMP/LBPA and PtdIns(3,5)P2 are involved in phagosome
maturation (FIGURE 3). These shared features are not sur-
prising, considering that the phagosome fuses with compo-
nents of the endosomal compartment as it progresses to
become a phagolysosome. However, phagocytosis has

unique features. Because professional phagocytes such as
macrophages and dendritic cells are also professional anti-
gen-presenting cells, phagosome maturation in these cells
has to contend with the added complexity of MHC II load-
ing and delivery to the surface for presentation. Further-
more, these cells often take up toxins and pathogens, which
need to be neutralized. As such, professional phagocytes
contain specialized machinery to oxidize, permeabilize, and
starve bacteria and other microbes of essential nutrients
(117). These weapons are exceptionally effective but also
dangerous, especially if deployed haphazardly against the
host cells. To avoid unwanted damage, phagosomes have
unique permeability and self-repair properties. In addition,
professional phagocytes minimize the generation of poten-
tially toxic microbicidal agents by differentiating dangerous
intruders from innocuous cargo, such as apoptotic cells that
are also internalized by phagocytosis (36).

PtdIns(3)P is a key marker and maturation determinant of
the early phagosome. As in endosomes, it is important for
fusion with other early compartments, for ESCRT assem-
bly, and for retromer recruitment. Vps34, the class III
PtdIns3K, is responsible for most, if not all, the PtdIns(3)P
generated by phagosomes (379). Shortly after scission, and
often even before sealing, phagosomes undergo fusion with
early endosomes. This step appears to proceed normally in
the absence of PtdIns(3)P, to the extent that Rab5 is still
acquired by phagosomes when PtdIns3K inhibitors are
added to the cells immediately after phagosome formation
(380). In fact, addition of wortmannin or LY294002 causes
phagosomes to retain Rab5 for inordinately long periods of
time. Inhibitor-treated phagosomes also acquire (some)
Rab7, yet are unable to fully mature to the phagolysosomal
stage. Inhibiting PtdIns(3)P formation also prevents the re-
cruitment of Hrs, the ESCRT-0 component, to the phago-
some and presumably impairs the generation of (at least one
type of) ILVs (381). PtdIns(3)P is also required to recruit the
retromer complex to maturing phagosomes. Although its
function has not been explored in mammalian phagosomes,
studies in Caenorhabditis elegans implicate the retromer in
retrieval of the phagocytic receptor, CED-1, which is asso-
ciated with clearance of apoptotic cells (64).

Most of the above functions of PtdIns(3)P in phagosome
maturation are equivalent to those it fulfills during endocy-
tosis. In addition, PtdIns(3)P has other, specialized respon-
sibilities during phagocytosis. First, it is essential for the
generation of ROS within maturing phagosomes. Recruit-
ment of p40phox, one of the soluble subunits of the NADPH
oxidase complex, is required for phagosomes to generate
superoxide; this is accomplished by association of the PX
domain of p40phox with phagosomal PtdIns(3)P (185,
404). Moreover, some types of phagocytosis, especially
of bacteria, are accompanied by recruitment of compo-
nents of the autophagy system to the phagosome (35).
The precise role of this recruitment is not entirely clear,
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but it may serve to repair damage induced by the patho-
gens or incurred in the process of generating microbicidal
products. While its function remains to be defined, we do
know that delivery of autophagic components to phago-
somes depends on PtdIns(3)P.

Less is known about the contribution of PtdIns(3,5)P2 and
BMP/LBPA to phagosome maturation. BMP/LBPA has
been detected on the late phagosome (381), but its exact
role is undefined. Although extrapolation is risky, it can be
tentatively postulated, by analogy with endocytosis, that
BMP/LBPA is involved in ILV formation. PtdIns(3,5)P2 has
not been reported on phagosomes. Nevertheless, because
PtdIns(3)P is the main determinant of PtdInsK-FYVE re-
cruitment and this enzyme is ubiquitously expressed, it is
safe to assume that PtdInsK-FYVE and PtdIns(3,5)P2 will
be proven to exist on maturing phagosomes as well.

Finally, PtdSer, which is abundant in the plasma membrane,
is also present on maturing phagosomes. While its content
has not been analyzed rigorously by chemical means at the
individual stages of the process, recent experiments using a
PtdSer-specific fluorescent probe demonstrated that PtdSer
is present on the cytoplasmic leaflet throughout the matu-
ration sequence, and that its concentration does not seem to
vary greatly, at least within the first 30–45 min (396). The
persistence of PtdSer on the phagosomal membrane is an-
ticipated to allow docking of proteins bearing C2 domains
and to confer some electronegativity to its cytosolic aspect,
which should in turn affect its ability to recruit and retain
polycationic proteins. Notably, phagosomes containing the
pathogens Legionella pneumophila and Chlamydia tracho-
matis, which divert traffic from the endocytic to the ER and
Golgi pathways, respectively, are devoid of PtdSer, reflect-
ing the composition of the destination compartments (398).

Often microbes actively manipulate phospholipid signaling
as a means to establish a chronic infection. Microbes that
infect phagocytic cells employ one of three strategies to
avoid the degradative environment of the phagolysosome:
arresting phagosome maturation, escaping the phagosome,
or remodeling the phagosome into a different, novel com-
partment (FIGURE 3). Mycobacterium tuberculosis uses the
former strategy and inhibits phagosome maturation. A gly-
cosylated PtdIns, mannose-capped lipoarabinomannan,

found in Mycobacterium tuberculosis has been shown to
block PtdIns(3)P-dependent trafficking (123), ostensibly by
inhibiting class III PtdIns3K. Listeria monocytogenes, on
the other hand, relies on the second strategy and escapes the
phagosome. The bacterial PtdIns-specific PLC abets this
escape by producing DAG, which recruits factors that pro-
mote permeabilization of the phagosome (295). Finally, Le-
gionella pneumophila exploits the third strategy by remod-
eling the phagosome into a new compartment. It uses
PtdIns(4)P to anchor its protein SidC, which aids in recruit-
ing vesicles derived from the rough endoplasmic reticulum
(301).

D. Macropinocytosis

Macropinocytosis shares some of the features of both
phagocytosis and CME. Like CME, macropinocytosis gen-
erates fluid-filled vacuoles but, similar to phagocytosis, it
requires large-scale actin remodeling and PtdInsP3K activ-
ity (17). It is clathrin-independent, produces vesicles of het-
erogeneous size (from 0.2 to 5 �m), and is preceded by
membrane ruffling (FIGURE 4). Simplistically, macropi-
nosomes form as membrane extensions flop into each other
or fold onto the plasma membrane, undergoing fusion and
thereby creating large fluid-filled vacuoles that pinch off the
surface membrane. Some cells, like immature dendritic cells
and macrophages, undergo constitutive ruffling as a means
of sampling the environment for antigenic determinants
(318). Once internalized, these soluble factors are processed
and loaded onto the class II major histocompatibility com-
plex (FIGURE 4), which is then diverted to the cell surface
where antigens are presented to cells of the adaptive im-
mune system. Other cells require specific initiators to induce
macropinocytosis. Examples of macropinocytic inducers
include growth factors, phorbol esters, and chemotactic
molecules (354). Genetically, introduction of dominant-ac-
tive alleles of Ras, Src, or Rac isoforms can force cells to
undergo constitutive macropinocytosis in the absence of
any external stimuli. Due to the ubiquitous ability of cells to
form macropinosomes, several intracellular pathogens,
such as Salmonella and some viruses, exploit this pathway
to gain entry into host cells.

A general pathway leading to macropinocytosis (355) can
be inferred from the mode of action of the known initiators:

FIGURE 4. Macropinocytosis and phospholipids. Macropinocytosis can be induced by activation of a variety of receptors. It entails elaboration
of membrane ruffles that trap fluid as they fold over one another, undergoing fusion. Type I PtdInsP5K (PIP5KI) activity is essential for ruffling,
while type I PtdInsP3K (PI3KI) is required for membrane fusion. PtdIns(4,5)P2 depletion, and possibly also PtdIns(3,4,5)P3 formation, are
necessary for macropinosome scission from the membrane. Although 5= phosphatases are recruited to macropinosomes, their activity on
PtdIns(4,5)P

2
has not been demonstrated in the case of macropinocytosis. After forming and separating from the plasmalemma, the

macropinosome progressively decreases in size as it interacts with endocytic compartments. Retromer localizes to macropinosomes and may
mediate removal of excess membrane and recycling of bystander, integral proteins as the lumen compresses. Rab5 accumulates on
macropinosomes where it contributes to maturation but seems to be required also for macropinosome scission from the plasmalemma.
PtdInsK-FYVE (PIKfyve) is present on the macropinosome, which suggests that its product, PtdIns(3,5)P2, is present as well. Bottom right: a
major physiological role of macropinocytosis is the internalization and processing antigens for presentation by class II major histocompatibility
complex (MHC II).
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activation of receptor tyrosine kinases fosters the recruit-
ment of SH2 domain-containing adaptors like Grb2, which
in turn activate Ras through the appropriate exchange fac-
tors. Ras stimulation leads to activation of class I PtdIns3K
via its p85 subunit and consequent activation of Rac and
Cdc42. The ensuing cycles of actin polymerization and de-
polymerization underpin the observed ruffling. Different
inducers of macropinocytosis seem to enter this pathway at
different stages. Growth factors stimulate the pathway
from the top, while phorbol esters and constitutively active
Rac affect the pathway further downstream. Care must be
taken to distinguish classical macropinocytosis, that occurs
at the cell periphery, from circular dorsal ruffles or waves
that occur on the dorsal surface of the cell (92). These
morphologically similar but spatially distinct pathways
tend to rely on different signaling pathways, even though
they are both stimulated by growth factors.

Macropinocytosis is often diagnosed based on its sensitivity
to PtdInsP3K inhibitors or to actin perturbants like the
cytochalasins and latrunculins. These properties, however,
are shared with phagocytosis and with some forms of en-
docytosis. An additional criterion has been widely applied
to identify macropinocytosis, namely, its susceptibility to
inhibition by amiloride. Amiloride is a potent inhibitor of
Na�/H� exchange and in all likelihood inhibits macropi-
nocytosis by compromising the regulation of the intracellu-
lar pH (196). As such, this drug can inhibit not only mac-
ropinocytosis, but a plethora of other cellular responses as
well, and must therefore be used with extreme caution.

1. Macropinosome formation

Our understanding of the role of phospholipids in macropi-
nocytosis is incomplete and confounded by the use of dif-
ferent induction conditions. Nevertheless, several general-
izations can be made, particularly with regard to growth
factor-induced macropinocytosis, which is more commonly
studied than constitutive macropinocytosis.

In a manner analogous to that described for phagocytosis,
PtdIns(4,5)P2 undergoes localized biphasic changes, ini-
tially increasing during the ruffling stage and disappearing
at the time of macropinosome closure (FIGURE 4). The exact
factors underlying the initial rise in PtdIns(4,5)P2 are un-
known, but the acknowledged activators of PtdInsP5K
(Rac, PtdOH, and Arf6) are detected at sites of macropi-
nocytosis and are therefore likely candidates (139, 144).
Disappearance of PtdIns(4,5)P2 depends on PtdInsP3K and
PLC activity. Phosphoinositide phosphatases have been de-
tected in sealed macropinosomes (353), but their participa-
tion in PtdIns(4,5)P2 hydrolysis has not been formally es-
tablished.

Inhibition of PLC abolishes both ruffling and macropinocy-
tosis (9). Calcium released from the ER by IP3 does not
appear to play an essential role; DAG, in contrast, seems to

be critical. In fact, addition of exogenous DAG or of a DAG
mimetic, such as phorbol 12-myristate 13-acetate, is suffi-
cient to elicit macropinocytosis (354). Notably, the most
common targets of DAG, the conventional and novel PKC
isoforms, have an ambiguous role in macropinocytosis,
since only some of their inhibitors have an effect (187, 321).

Type I PtdInsP3Ks are present and active at sites of mac-
ropinocytosis. PtdInsP3K inhibition prevents both “spon-
taneous” macropinocytosis in macrophages and oncogene-
transformed fibroblasts, and also growth factor-induced
macropinocytosis. Interestingly, the ruffling that precedes
and is required for macropinosome formation is inhibited
by PtdInsP3K antagonists only in some cases (118), but not
in others (390). This suggests that random contacts between
ruffles are insufficient for membranes to merge into mac-
ropinosomes, and that another, PtdInsP3K-dependent pro-
cess is involved.

Unlike phagocytosis (380), macropinocytosis is profoundly
depressed when the small GTPase Rab5 is inhibited (215).
Expression of a dominant-negative allele of Rab5 consis-
tently inhibits macropinosome formation, although the un-
derlying mechanism is not known. It is tempting to specu-
late that Rab5 functions by recruiting 5=-phosphatases to
complete the hydrolysis of PtdIns(4,5)P2, thereby enabling
scission.

2. Macropinosome progression

Less is known about the maturation of macropinosomes
than about their formation (FIGURE 4). They are initially
very similar to the plasmalemma, inasmuch as they do not
concentrate receptors when they form, unlike phagocytosis
and CME. The fate of the nascent macropinosome varies,
depending on the cell type. In A431 and 3T3 cells, they tend
to recycle back to the surface (188). In other cells, macropi-
nosomes undergo traditional maturation and fuse with the
lysosome. As they mature, they progressively shrink; this is
unlikely to reflect osmotic changes, but rather the occur-
rence of net membrane fission. However, the size of mac-
ropinosomes occasionally increases as they fuse with one
another. Thus macropinosomes possess the machinery for
both homotypic fusion and sorting/recycling. By homology
with other endocytic compartments, these processes likely
require PtdIns(3)P. Accordingly, several PtdIns(3)P-associ-
ated Snx proteins, including those associated with the ret-
romer complex (Snx1 and Snx5), are recruited to the ma-
turing macropinosome (386). PtdInsK-FYVE is also re-
cruited to maturing macropinosomes and likely generates
PtdIns(3,5)P2. Overexpression of a catalytically-inactive
mutant of PtdInsK-FYVE or incubation with a PtdInsK-
FYVE inhibitor prevents fusion between macropinosomes
and lysosomes or late endosomes (189). Beyond this, little
else is known about the fate of macropinosomes. Clearly,
much remains to be learned.
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VII. CONCLUDING REMARKS

For too long, phospholipids were regarded largely as an
inert solvent where membrane proteins were embedded
and traveled laterally. It is now glaringly apparent that
lipids in general, and phospholipids in particular, are
active and very dynamic partners in virtually all aspects
of membrane function, from signaling to cytoskeletal as-
sembly. In particular, phospholipids are key to mem-
brane traffic. The relationship is bidirectional: phospho-
lipids control membrane fusion and fission, while mem-
brane trafficking affects the distribution of phospholipids–
the conductor travels with the train. Despite fluctuations
due to membrane turnover and the concomitant metabo-
lism of a fraction of lipids during signaling, the phospho-
lipid composition of nonreplicating membranes remains
surprisingly stable within narrow limits. It is this illusion
of stasis that obscured the functionality of lipids for de-
cades.

Technical limitations have also contributed to our igno-
rance of phospholipid biology and, to a large extent,
these limitations persist. While fluorescent probes have
been designed and implemented for the study of some
lipids in their native environment, this applies to only a
handful of lipid classes. For the remaining lipids, detec-
tion is limited to mass methods that require extraction
followed by analysis, precluding spatial (subcellular)
analysis and severely limiting the study of minor, evanes-
cent species. These limitations were inevitably reflected
in the scope of this review.

Much remains to be learned about the dynamic functional
roles of lipids in biological membranes, and the rate of
progress will be dictated by the evolution of techniques to
visualize, quantify, and manipulate individual lipid species.
We foresee further development of fluorescently tagged lipid-
specific probes that can be encoded genetically or other-
wise introduced into live cells, and of new and better
head-group-specific antibodies. In combination with
emerging superresolution microscopy techniques, these
beacons will reveal much about lipid distribution and
dynamics. The increasing sensitivity and flexibility of
mass spectrometric methods will facilitate analysis of mi-
nor species and will further inform of the length and
saturation of the acyl chains, variables that profoundly
impact the biological function of phospholipids. In addi-
tion, (over)expression of lipid-modifying enzymes, or
their selective inhibition by knockout or gene silencing
strategies, together with the use of new pharmacological
agents will provide key information of lipid function.

The current intractability of lipids, however, should neither
distract us from their importance nor deter us from studying
them in much greater depth.
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