




















stores (56, 246). The phosphorylation occurs in response to
receptor activation and thus represents an autoinhibitory
feedback mechanism (246). �-Arrestins are most likely in-
volved in the process of PKC-associated desensitization
(681, 853). Conversely, dephosphorylation of the Thr-888
residue is carried out by a calyculin-sensitive phosphatase,
thereby restoring the receptor’s initial sensitivity (246). An-
other mechanism of desensitization is mediated by a G pro-
tein receptor kinase (GRK), most likely by interfering with
G�q regulated pathways (see below) (681, 853).

Once stimulated, the CaSR activates a variety of intracellu-
lar signaling cascades. Being a GPCR, most of these pro-
cesses are mediated by G proteins. Specifically, G�q/11, G�i,
and G�12/13 have been shown to be coupled to the CaSR
(40, 175, 495, 849). The expression of all subunits was
confirmed in bovine parathyroid (1115). G�i mediates the
suppression of cAMP levels by inhibiting adenylyl cyclase
and activates the ERK/MAPK pathway (175, 250, 375,
572). Activation of G�q/11 results in increased intracellular
calcium concentrations via activation of PLC and IP3 trig-
gered calcium release (133, 1010). As demonstrated in HEK
cells, this cascade can also activate further downstream
phospholipase A2 leading to production of arachidonic acid
metabolites (415). G�12/13 is thought to regulate phospho-
lipase D and phosphatidylinositol 4-kinase (PI 4-K); how-
ever, this interaction has only been demonstrated in heter-
ologous cell culture system (494, 495).

2. CaSR in the parathyroid

CaSR regulates parathyroid function at three levels: 1) the
release of PTH from secretory granules, 2) de novo synthe-
sis of PTH, and 3) parathyroid cell growth.

Activation of CaSR by increasing plasma calcium results in
an inhibition of PTH release, thereby lowering calcium lev-
els. It is thought that this response is mediated by the gen-
eration of arachidonic acid metabolites via G�q and PLA2

activation (FIGURE 6) (121, 152). Cultured porcine parathy-
roid cells demonstrated an increase in arachidonic acid pro-
duction after CaSR stimulation while PTH release was in-
hibited (121). Furthermore, exogenous administration of
arachidonic acid suppressed PTH release from the parathy-
roid cells (121). Similar effects were demonstrated for the
arachidonic acid metabolites 12- and 15-hydroxyeicosatet-
ranoic acid, suggesting that they represent the downstream
effectors of arachidonic acid production (120).

Apart from directly controlling PTH release, CaSR also
modulates PTH synthesis. PTH gene transcription is mainly
regulated by 1,25(OH)2-vitamin D. Binding of 1,25(OH)2-
vitamin D to the VDR causes a decrease in pre-pro-PTH
mRNA levels creating a negative-feedback loop (154, 930,
931). However, it was recognized before the identification
of the CaSR that serum calcium can modulate the actions of
1,25(OH)2-vitamin D on PTH gene transcription (930). It

was shown that increases in calcium can potentiate the in-
hibitory effects of 1,25(OH)2-vitamin D (930). This effect is
most likely mediated by CaSR, whose activation can decrease
PTH transcription by augmenting the inhibitory effects of
1,25(OH)2-vitamin D. Molecularly this is achieved by upregu-
lating the expression of the VDR (151, 162, 362, 653, 916).
The current working model states that activation of CaSR
causes an increase of arachidonic acid metabolites and activa-
tion of the MAPK pathway, which in turn results in increased
VDR mRNA levels (FIGURE 6) (151). This allows the parathy-
roid to adjust its 1,25(OH)2-vitamin D sensitivity to the cur-
rent plasma calcium levels.

The molecular mechanisms underlying the trophic effects of
CaSR activation are less clear. Earlier observations had al-
ready suggested that hypocalcemia is associated with para-
thyroid cell proliferation (778). Currently, the CaSR spe-
cific calcimimetics provide the most useful insight into the
regulation of parathyroid growth by CaSR. Calcimimetics
administered in the context of both animal models and
clinical studies of hyperparathyroidism demonstrate that
activation of CaSR leads to a reduction in gland size
(510, 589, 746, 1128). Conversely, inactivating muta-
tions of CaSR result in parathyroid enlargement. Para-
thyroid-selective genetic disruption of G�q was further-
more shown to cause moderate hyperparathyroidism
with increased plasma PTH levels and gland hyperplasia,
suggesting a role of G�q in the regulation of parathyroid
cell growth (849). Similar findings were reported in
G�q/11 double KO animals (1159).

3. CaSR in the kidney

The CaSR acts as an important regulator of ion and water
homeostasis in the kidney. It should be noted that it can
exert its effects on calcium transport independently of other
hormonal regulators, such as PTH and 1,25(OH)2-vitamin
D. The CaSR is expressed along most of the nephron, albeit
in varying subcellular localizations (FIGURE 8) (907, 908).
In the proximal tubule, CaSR is localized apically at the
base of the brush border, where it has been implicated to
play a role in phosphate transport (52, 907, 909). The pri-
mary regulator of phosphate transport in the proximal tu-
bule of the kidney is PTH. In brief, increased PTH levels
inhibit phosphate reabsorption from the lumen. Activation
of the apical CaSR can partially reverse the effects of PTH
and restore phosphate absorption (52). Conversely, PTH
and high phosphate levels reduce CaSR expression (909).
Furthermore, it is likely that the CaSR mediates the inhibi-
tory effects of calcium on 1,25(OH)2-vitamin D synthesis in
the proximal tubule (109, 702).

In the thick ascending limb of the loop of Henle, CaSR is
located on the basolateral membrane (907). In this nephron
segment, the receptor acts as a major modulator of mon-
ovalent and polyvalent ion absorption. Activation of CaSR
leads to an inhibition of the apical renal outer medullary
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potassium (ROMK; Kir1.1) channel, mainly through ara-
chidonic acid metabolites created by PLA2 (1147, 1148).
Apical ROMK releases potassium ions into the lumen,
which in turn are needed to fuel apical ion uptake through
the Na�-K�-2Cl� (NKCC2) cotransporter. By decreasing
apical potassium efflux, CaSR inhibits sodium and chloride
uptake through NKCC2 (906). This correlation is reflected
in much earlier observations, which report that calcium
infusions can decrease tubular sodium clearance (300, 718,
1052). In addition, impairment of NKCC2 has also impli-
cations for calcium absorption. Reduced NKCC2 activity
decreases the lumen-positive potential and negatively af-
fects countercurrent multiplication, and in consequence the
nephron’s ability to concentrate urine (434). Both mecha-
nisms will lead to impaired calcium absorption (434). Cal-
cium absorption in the medullary portion of the thick as-
cending limb is thought to occur predominantly as passive
uptake through the paracellular route (995). Similar obser-
vations have been made when blocking NKCC2 pharmaco-
logically with the loop diuretic furosemide (299). It has thus
been proposed that activation of basolateral CaSR has
“loop diuretic-like” effects, reducing NaCl but also calcium
absorption in the kidney (434).

In contrast to the medullary section, the cortical portion of
the thick ascending limb has been proposed to have pre-
dominantly active calcium uptake properties, which are un-
der the hormonal regulation of PTH and calcitonin (344,
509). PTH increases calcium absorption in this segment,
and it has been shown that, similarly to phosphate absorp-
tion in the proximal tubule, activation of CaSR can sup-
press the effects of PTH (264, 754). The absorption of NaCl
does not seem to be affected by CaSR (264, 754).

The distal convoluted tubule and the connecting tubule are
responsible for the fine-tuning of calcium reabsorption in
the kidney. To achieve this goal, they are equipped with
molecular machinery, similar to that in the duodenum
(TRPV5, calbindin-D 28k, NCX1, and PMCA1b) to ab-
sorb calcium against its electrochemical gradient through
the transcellular pathway (680). In analogy to the proximal
small intestine, these transporters are predominantly regu-
lated through 1,25(OH)2-vitamin D, but also PTH. CaSR
colocalizes with TRPV5 in this segment (1090). Its activa-
tion causes increase calcium influx through TRPV5 and
may thereby locally and rapidly adapt active absorption to
the urine calcium concentration (FIGURE 8) (1090).

Apart from regulating calcium and phosphate absorption in
the kidney, CaSR modulates proton and water movement in
the collecting duct. In the intercalated cells of the collecting
duct, apical V-ATPase acidifies the urine in an effort to
maintain systemic acid-base homeostasis. It has been shown
that luminal calcium and neomycin can induce V-ATPase
activity via activation of CaSR, thereby causing proton se-
cretion into the urine (FIGURE 8) (901). Since the formation

of calcium kidney stones is dependent on luminal pH, it has
been speculated that this may represent an autoprotective
mechanism that prevents nephrolithiasis (901). Further-
more, stimulation of apical CaSR in the principal cells of the
collecting duct leads to decreased ADH (vasopressin)-stim-
ulated water reabsorption through AQP2 (FIGURE 8) (942,
943). Taken together, activation of CaSR has diuretic ef-
fects via inhibiting NKCC2 in the thick ascending limb of
the loop of Henle and by inhibiting AQP2-mediated water
reabsorption the collecting duct.

4. CaSR in the gastrointestinal tract

The CaSR is distributed along most of the gastrointestinal
tract, ranging from the stomach to the large intestine (186,
360, 744, 932, 998). We are now only slowly beginning to
unravel its function in this diverse array of tissues. In the
stomach, CaSR localizes to the basolateral membrane of
the acid-secreting parietal cells and to all membranes of the
gastrin-secreting G-cells (FIGURE 8) (142, 182, 886). Pri-
mary cultures of G-cells were shown to release gastrin after
stimulation of the CaSR with calcium (142, 886). The re-
lease is mediated via calcium influx into the cytosol through
nonselective cation channels opening after CaSR stimula-
tion (142). These findings provide the molecular basis for
the observation that rises in serum calcium can increase
serum gastrin levels (see sect. IIB2). The apical expression of
CaSR in G-cells theoretically enables it to act as a luminal
nutrient sensor modulating gastric acid secretion and other
parameters. In recent studies there is direct evidence show-
ing that gastrin levels increase in mice after calcium and
L-type amino acid ingestion (325). This effect was abol-
ished in CaSR (�/�) animals (325). In healthy human test
subjects, pharmacological stimulation of CaSR leads to a
concomitant increase in gastrin levels and gastric acid out-
put (165). CaSR on G-cells was thus postulated to play an
important role in the gastric phase of acid secretion by
maintaining acid output by maintaining gastrin secretion
(325).

Apart from being expressed on G-cells, CaSR is also local-
ized on the basolateral membrane of the acid-secreting pa-
rietal cell, where it exerts effects that are independent of
gastrin and other secretagogues. Activation of parietal cell
CaSR has been reported to increase H�-K�-ATPase-medi-
ated proton secretion, thereby acidifying the gastric lumen
(FIGURE 8) (145, 291, 373). This stimulatory effect was
demonstrated for direct activators, such as calcium or
Gd3�, but also allosteric modifiers, such as L-type amino
acids (145, 291, 373). In parallel to other tissues, the intra-
cellular activation signal for H�-K�-ATPase is mediated by
rises in intracellular calcium, PLC, MAPK, and PKC (899).
In conclusion, both rises in luminal and plasma calcium
concentrations can induce gastric acid secretion either indi-
rectly through gastrin release or directly through parietal
cell activation. The physiological significance of this obser-
vation remains the subject of speculation, but may be linked
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to facilitating calcium uptake by increasing acid output. As
described in a subsequent section, it has been speculated
that gastric acid increases the bioavailability of ingested
calcium (see sect. V). Alternatively, CaSR may primarily
function as a nutrient sensor in the stomach (amino acid
sensing), which maintains constant acid output in the gas-
tric (apical G-cell sensing) and postprandial (basolateral
parietal cell) phase of digestion, when circulating levels of
amino acids are high (325).

In the intestine, functional investigations on CaSR have
mainly been conducted in colonic epithelia, where CaSR
localizes to both the basolateral and apical membranes of
the colonic crypt (173, 186, 360). Expression patterns vary
slightly in the small intestine, with general basolateral ex-
pression and additional weak apical expression in the villus
(173, 360). Furthermore, CaSR is expressed in both the
Meissner’s and Auberach’s plexuses. Early experiments on
single perfused colonic crypts demonstrated that intracellu-
lar calcium concentrations could be increased when expos-
ing the crypts to classic CaSR agonists and that forskolin-
stimulated fluid secretion could be inhibited (186). This and
subsequent investigations indicate that CaSR plays an im-
portant role as a modulator of colonic fluid secretion (185,
186). Subsequently, attempts have been made to take ad-
vantage of the “constipatory” effects of CaSR activation in
pathophysiological settings. Activations of CaSR in the
course of diarrheagenic enterotoxin exposure was shown to
decrease fluid secretion via increased breakdown of cyclic
nucleotides (371). Although the potential clinical applica-
tions of ameliorating the symptoms of secretory diarrhea
are promising, more efforts will have to be made to fully
unravel the physiological role of CaSR in intestinal ion and
fluid transport. So far it is not clear whether intestinal CaSR
can modulate calcium absorption, as is the case in the kid-
ney.

5. CaSR in bone

It is well established that CaSR is expressed in osteoblasts,
osteoclasts, and their respective precursors (172, 174, 542,
1183–1185, 1192). The functional role of CaSR in these
cells is, however, less clear. Undoubtedly, both cell lines are
exposed to local fluctuations in calcium concentrations
making an adaptive response to the calcium environment
plausible. Indeed, changes in extracellular calcium concen-
tration have been shown to regulate various cell functions,
mostly in in vitro models. Extracellular calcium can stimu-
late the proliferation, migration, and differentiation of os-
teoblasts (174, 297, 1183, 1184, 1186). Similarly, calcium
was proposed as a differentiation signal for osteoclasts
(542, 544, 734). Significant doubt about the in vivo impor-
tance of CaSR in bone has emerged with the generation of
the CaSR (�/�) mice. Although CaSR knockout results in
rickets, these animals suffer from severe hyperparathyroid-
ism, which did not allow a discrimination between the ef-
fects of high PTH and CaSR on bone turnover (365). Con-

comitant genetic ablation of the parathyroid gland or PTH
secretion, however, revealed that the skeletal phenotype of
CaSR single mutation (�/�) could mostly be rescued, sug-
gesting that the skeletal abnormalities were due to high
circulating PTH levels rather than CaSR inactivation (598,
1096). Furthermore, CaSR does not seem to be the exclu-
sive calcium-sensing mechanism in osteoblasts, as changes
in extracellular calcium can still elicit functional responses
in CaSR (�/�) osteoblasts (852). This observation has been
attributed to another GPCR with calcium-sensing capabil-
ities, namely, GPRC6A (850, 851). Although GPRC6A has
a higher activation threshold for calcium, it also responds to
the CaSR allosteric activator R568 (851). GPRC6A activa-
tion may thus represent a confounding factor in most in
vitro studies on osteoblasts and their modulation by CaSR.
Also, GPRC6A knockout leads to osteopenia, further un-
derlining the possibility of an alternate calcium-sensing
pathway in bone (850). Osteoblasts extracted from these
GPRC6A-deficient animals show decreased sensitivity to
extracellular calcium and in vitro mineralization defects
(854).

Although these observations have profoundly questioned
the physiological significance of CaSR in bone, closer ex-
amination still favors a role of CaSR in bone turnover. With
the recent advances in genetic methods, an osteoblast-spe-
cific CaSR (�/�) model has been created (171). These ani-
mals have severely stunted growth and skeletal develop-
ment, clearly suggesting an involvement of CaSR in normal
osteoblast function (171). The previous conflicting evidence
gained from global CaSR (�/�) models with survival rescue
by elimination of PTH synthesis have been attributed to the
possible expression of alternate CaSR splice variants, which
may compensate for the deletion of full-length CaSR in
these animals (171, 915). In an attempt to further elucidate
the function of CaSR in osteoblasts, the reverse approach
has been executed by specifically upregulating CaSR in os-
teoblasts with use of a constitutively active receptor mutant
(296). Upregulation of CaSR results in bone loss, as evidenced
by a decrease in bone volume and density, specifically of tra-
becular bone (296). These findings are accompanied by an
increased number of osteoclasts, whereas osteoblast parame-
ters were essentially unchanged (296). Activation of CaSR has
been speculated to promote RANKL production by osteo-
blasts, which serves as an osteoclastogenic signal (296). Osteo-
blasts may thus recruit osteoclasts and induce their maturation
via CaSR signaling and increased RANKL expression, which
would explain the observed increase in bone turnover and
osteoclast numbers in the setting of constitutive CaSR activa-
tion (241).

V. THE STOMACH AND CALCIUM

Preceding parts of this review have independently summa-
rized the physiology of acid secretion, intestinal calcium
absorption, and their respective regulation. The following
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section will attempt to illustrate the functional intersections
between these seemingly unrelated fields. In particular, the
question of whether acid is needed to absorb calcium effec-
tively from the gut or whether the stomach contributes to
the regulation of calcium homeostasis by secretion of an
endocrine substance will be investigated.

A. Proton Pump Inhibitors and the Risk
of Fracture

In May 2010, the Food and Drug Administration (FDA)
released the following safety announcement: “Healthcare
professionals and users of proton pump inhibitors should
be aware of the possible increased risk of fractures of the
hip, wrist, and spine with the use of proton pump inhibi-
tors, and weigh the known benefits against the potential
risks when deciding to use them” (319).

Proton pump inhibitors (PPIs, see sect. IIC1) are in wide-
spread use for the treatment of acid-related disorders, such
as gastroesophageal reflux disease (GERD) or gastric ulcer
disease. They exert their curative effects by inhibiting the
acid output of the stomach. Over the recent years, mostly
epidemiological evidence has accumulated which links the
intake of PPIs to an increased risk of sustaining fractures,
especially in the elderly population. Yang et al. (1190) pub-
lished one of the earliest and largest studies investigating
this potential correlation in 2006. Examining a population
of over 13,000 hip fracture cases and over 135,000 controls
over the age of 50, the authors concluded that long-term
(over 1 year) PPI use was associated with an increase in hip
fractures (AOR � 1.44) (1190). Although the likelihood of
sustaining a fracture following PPI intake may seem fairly
low, the implications for public health are substantial. This
has multiple reasons: PPIs represent the third most com-
monly prescribed medication in the United States and are
also available as over-the-counter formulations. Further-
more, there is an ongoing debate whether PPIs are overpre-
scribed, putting certain populations at unnecessary risk of
side effects. In combination with the high incidence of os-
teoporotic fractures, the mean incidence of hip fractures
alone between 1986 and 2005 was 957 per 100,000 women
over the age of 65 per year, a small increase in risk suddenly
has implications for a very large population (123).

The roots of this controversy may potentially be traced back
to the 1940s and 1950s. Before the advent of PPIs, total and
partial gastrectomies or vagotomies were performed to con-
trol acid-related disorders. It was soon apparent that pa-
tients who underwent these radical surgical procedures de-
veloped osteoporosis/-malacia (58, 305, 732, 876). A study
that assessed the prevalence of osteomalacia in gastrecto-
mized patients concluded that up to 12% of patients (19%
of females) had histologically overt osteomalacia, although
general disturbances in calcium metabolism were estimated
to occur in up to 28% of patients (208, 368). Other inves-

tigations came to lower prevalence results of �5–10%
(1091). The osteomalacia was also shown to translate into
an increased incidence of fractures in these patients (795).
Naturally, gastrectomy represents a radical intervention,
and the reasons for this correlation may be multifactorial,
but reduced acid output may be of significance.

Back in the field of PPIs, the seminal epidemiologic investi-
gation by Yang et al. was subsequently followed up by a
number of studies, which also focused on other types of
fractures, other populations, and other drugs reducing gas-
tric acid output, such as H2 receptor antagonists (202, 228,
252, 394, 400, 559, 868, 923). Although their conclusions
were somewhat controversial, a recent meta-analysis sup-
ports the initial hypothesis that a correlation between PPI
intake and fracture risk (hip, spine, and any-site fractures)
exists (1195). The meta-analysis considered 11 studies and
identified an overall odds ratio of 1.30 for all fracture types
combined (1195). There was no association between H2

blocker intake and an increase in fracture risk, although
some single studies supported a link (228, 1195). Another
meta-analysis came to a comparable conclusion with regard
to an increased fracture risk under PPI exposure (616).

B. Gastric Acid and Intestinal
Calcium Uptake

A variety of reasons could theoretically account for the
observation that PPIs increase the likelihood of fractures.
The most prominent hypothesis assumes that the reduced
acidity in the stomach impairs the intestinal absorption of
dietary calcium. This assumption is based on both patient
observations and experimental animal data. Alas, the num-
ber of animal studies, which in contrast to investigations in
humans per default allow more radical experimental de-
signs and genetic manipulation, is very small.

1. Effects of gastrectomy, vagotomy, and PPIs on
mineral metabolism in humans

Before discussing the reports that try to correlate PPI use
with calcium uptake, it is worthwhile to examine older
literature on patients that had undergone partial or total
gastrectomy. As discussed previously, these procedures are
known to be linked to bone disease. In contrast to PPIs,
which eliminate the singular factor of acid secretion, gas-
trectomies also influence gastric emptying, the emulsifica-
tion of food stuffs, and food habits. It is thus more difficult
to draw conclusions on the influence of acid secretion on
calcium absorption from gastrectomized patients than from
individuals on PPI therapy. A further caveat lies in the type
of gastrectomy, as different surgical procedures are and
were in use. Some surgeries bypass the duodenum (Billroth
II, Roux-en-Y, total gastrectomy), whereas some leave the
duodenal passage intact (Billroth I).
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A common finding among gastrectomized patients is their
low 25(OH)-vitamin D levels, while levels of 1,25(OH)2-
vitamin D seem to be increased (101, 244, 378, 511, 794,
972, 1081). The pathophysiological reason for this is not
entirely clear. It has been argued that bone disease and low
25(OH)-vitamin D are a result of impaired vitamin D ab-
sorption following surgery; however, the consensus seems
to be that uptake rates of vitamin D is not impaired in these
patients (245, 378; contested by Ref. 1081). The vitamin D
insufficiency may also be a byproduct of improper nutrition
(378). As fat and milk intolerance can develop, especially in
surgeries which exclude the duodenum (Billroth II), a
change of dietary habits with insufficient intake of the fat-
soluble vitamin D may be an underlying cause. Indeed,
long-term longitudinal studies suggest that maintaining
body weight reduces the risk of developing bone disease
after gastrectomy, which emphasizes the role of adequate
nutrition (667, 668). On the other hand, Billroth I and II
patients show the same loss in bone density, although Bill-
roth II surgery (bypassing of the duodenum) is associated
with a much higher degree of fat malabsorption (110, 651).
A different investigation even concluded that Billroth I pa-
tients have a higher loss in bone density than Billroth II
patients (794). A more recent report suggests that the prob-
lem underlying bone disease after gastrectomy may be im-
paired calcium absorption, rather than dietary vitamin D
deficiency (244). It has been shown that high 1,25(OH)2-
vitamin D levels accelerate the breakdown of 25(OH)-vita-
min D (210–212, 244). The observed low 25(OH)-vitamin
D levels in gastrectomized patients may thus be a byproduct
of increased catabolism, and not insufficient intake,
whereas the high 1,25(OH)2-vitamin D levels may represent
compensatory upregulation due to insufficient calcium ab-
sorption or intake (244). Calcium absorption in gastrecto-
mized patients (Billroth I � II) has been reported to be in the
low-normal range, while 1,25(OH)2-vitamin D levels are
increased (794). In line with these findings, secondary hy-
perparathyroidism, an indicator of compensatory upregu-
lation due to low serum calcium levels, is a known finding
after gastrectomy (101, 244, 1171). Other investigations on
intestinal calcium absorption in gastrectomized patients
came to very contradictory results, ranging from increased
to impaired absorption (8, 34, 255, 398, 585, 794). Many
of these reports failed to assess 1,25(OH)2-vitamin D and
PTH levels, which means that adaptive mechanisms may
mask the insufficient baseline uptake of calcium in the in-
testine (8, 34, 255, 398, 585, 794). In conclusion, the exact
pathogenesis of postgastrectomy osteopenia remains some-
what unclear. The disorder may be attributable to vitamin
D insufficiency, impaired calcium absorption, inappropri-
ate diet, or a combination of all factors.

The intrusiveness of gastric surgery makes it difficult to
dissect the influence of gastric acid on these parameters.
This is why vagotomized patients are a somewhat more apt
patient population to study the effects of gastric acid on

calcium uptake, albeit the number of studies on this cohort
is very limited. Vagotomy abolishes the parasympathetic
input to the stomach and thereby decreases the amount of
secreted acid. Although the gross anatomy of the stomach
remains intact, other parameters, such as gastrin levels, are
also deranged given the important role of the vagus nerve in
the regulation of gastric acid secretion (see sect. IIB). While
bone disease is generally not reported in these patients, low
25(OH)-vitamin D levels are common (514, 793). Similarly
to gastrectomy, the 1,25(OH)2-vitamin D levels are con-
comitantly elevated, suggesting adaptive upregulation po-
tentially to compensate for decreased calcium absorption
(793). As discussed previously, the decreased 25(OH)-vita-
min D could be indicative of augmented catabolism of the
vitamin (244). Serum calcium is commonly decreased or in
the lower normal range, while intestinal calcium absorption
is increased, presumably in response to elevated 1,25(OH)2-
vitamin D (110, 974). Secondary hyperparathyroidism does
not manifest (793, 974).

In general, the disturbance in mineral metabolism is more
pronounced in gastrectomized patients than in vagoto-
mized patients, as evidenced by the higher incidence of bone
disease and secondary hyperparathyroidism. It is challeng-
ing to draw clear conclusions on the influence of gastric acid
on calcium absorption in either patient group. Yet, it is
apparent that compensatory mechanisms are in place in
these patients, as evidenced by the increased 1,25(OH)2-
vitamin D and PTH levels. Less efficient calcium uptake due
to decreased acid output may be one explanation for this,
but without further analysis this conclusion remains specu-
lative.

With the advent of PPIs and H2 blockers, the number of
surgical interventions to control acid-related disorders de-
creased massively. Given their high specificity, PPIs selec-
tively eliminate gastric acid output. Several investigations
that try to tie PPI intake to a disturbance in mineral metab-
olism exist. Graziani et al. (396) observed in eight healthy
volunteers that postprandial calcium concentrations did
not increase in subjects on a PPI regime (omeprazole 20 mg
3� daily), whereas control subjects demonstrated a clear
spike in serum calcium levels. Urine calcium excretion was
also reduced compared with the control group (396). A
similar effect of PPIs was later observed by two independent
groups in patients undergoing hemodialysis (395, 423). It
should be noted that neither of these studies directly as-
sessed intestinal calcium absorption, but rather measured
serum calcium as an indirectly related parameter. More
recently, intestinal calcium absorption was measured by
O’Connell et al. (807) using a radiolabeled calcium isotope.
The investigators reported that 7 days of PPI (omeprazole
20 mg 1� daily) intake significantly reduced calcium ab-
sorption in elderly women under fasting conditions com-
pared with the placebo group. Although these studies sup-
port a role of PPIs in reducing calcium uptake, conflicting
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evidence exists. Several investigations that assessed calcium
absorption using radioactive tracers and a whole gut lavage
technique found no evidence for a decrease in absorption
under short-term PPI treatment (421, 991, 1173). It is not
clear why these discrepancies in the outcomes of the trials
exist. There is, however, variability in the experimental
technique to measure calcium uptake, the cohorts investi-
gated (young vs. postemenopausal women vs. dialysis pa-
tients) and the form of calcium administration (calcium
salts vs. whole meals), which may partially account for the
divergent results. Indeed, different calcium salts are ab-
sorbed with different effectiveness in acid suppressed indi-
viduals, which will be subject of later discussion (see sect.
VC). Furthermore, different populations may have different
capacities for endocrine compensation.

In summary, it is experimentally difficult to unmask the
potential correlation between a reduction in gastric acidity
and calcium absorption, given our body’s high capacity for
compensation. In addition, slight alterations in mineral ho-
meostasis may take years to manifest themselves clinically,
for example, in osteopenia or fractures. Without following
up on test subjects on a long-term basis, snapshot measure-
ments which may still lie within clinically normal range can
be misleading.

2. Effects of gastrectomy, vagotomy, and PPIs on
mineral metabolism in the animal model

To further elucidate the problem of osteopenia following
gastrectomy or PPI use, several animal studies tried to rep-
licate and expand the observations made in human test
subjects.

For example, Axelson et al. (49) measured serum calcium
concentrations in rats who had undergone parathyroidec-
tomy and various surgical procedures to reduce gastric acid
output (vagotomy, antrectomy, gastrectomy). While para-
thyroidectomy alone predictably reduced serum calcium
levels, the gastric operations (with intact parathyroid
glands) had little to no effect on calcium concentrations
(49). Interestingly, intestinal calcium absorption was even
increased in the latter group. The authors attributed this
observation to a compensatory upregulation of PTH secre-
tion and concomitant 1,25(OH)2-vitamin D production. To
eliminate this factor, gastrectomy or fundectomy was con-
ducted after parathyroidectomy, thereby depriving the ani-
mals of their compensatory machinery. This intervention
resulted in massive hypocalcemia and death after a few
days, which led the authors to conclude that acid secretion
is important for the maintenance of calcium homeostasis
(49). Another investigation in rats that had undergone
antrectomy (Billroth I) observed a significantly decreased
absorption of calcium (345). Fundectomy did not affect
calcium absorption (927). However, both studies employed
the balance method to calculate calcium absorption, which
is considered less accurate than using radiotracers. In pigs,

total gastrectomy causes massively reduced calcium uptake
and secondary hyperparathyroidism (700). In this study,
the duodenum was surgically bypassed by esophagojeju-
nostomy, thereby eliminating the site of maximal active
calcium absorption and limiting the conclusion that can be
drawn (700).

In addition, several reports of vagotomy in a rat model
are available to us (49, 307, 308, 928). It has been dem-
onstrated that vagotomy alone has no effect on the rate of
intestinal absorption (307, 928). Secondary hyperpara-
thyroidism was observed by one group, while PTH levels
were reported to be unaffected by the other group (307,
928). 1,25(OH)2-vitamin D was not measured, which
would have provided further evidence of compensation
due to decreased calcium bioavailability. However, if va-
gotomy and parathyroidectomy are performed together,
intestinal calcium absorption is significantly impaired
compared with vagotomy or parathyroidectomy alone
(307). This is in accordance with the low serum calcium
concentrations found in gastrectomized and parathyroid-
ectomized rats (49).

PPIs were also used to relate acid secretion to bone dis-
ease in rats. Bone weight did not change in rats that were
treated for 4 wk with omeprazole (841). Alas, calcium
absorption was not measured in these animals, and a
decrease in bone weight represents a very terminal and
long-term outcome. A more recent investigation by
Schinke et al. (963) demonstrates that mice which have
been genetically manipulated to be achlorhydric (CCK2

�/�) have decreased serum calcium levels as well as de-
velop osteoporosis and secondary hyperparathyroidism
in an effort to maintain calcium balance (963). This study
is especially noteworthy, as acid secretion is knocked out
selectively in this mouse model while the stomach re-
mains intact (stomach morphology). Furthermore, a ge-
netic mutation that has been associated with osteopetro-
sis (a disease characterized by increased bone density)
due to osteoclast malfunction was also shown to cause
decreased gastric acid secretion. These patients present
with lower serum calcium values. Rather than being a
product of impaired bone resorption (osteoclast defect),
the hypocalcemia may thus be related to impaired intes-
tinal calcium absorption (gastric acid secretory defect)
(963).

C. Calcium Salts

Many investigators have employed calcium salts to de-
termine the efficacy of intestinal calcium absorption. Fur-
thermore, calcium salts are in wide clinical use as a di-
etary supplement. As will be discussed in this section,
calcium salts differ in their bioavailability, which not
only represents a potential source of error in experimen-
tal designs, but more importantly, has extensive clinical
implications.
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Calcium salts represent the most common supplementation
form of calcium for individuals who do not meet their ad-
equate daily intake. The indications for supplementation
can be diverse, but mostly include conditions such as osteo-
porosis/-penia or preventative intake after menopause, dur-
ing glucocorticoid intake or if lactose intolerant. In the year
2000, the National Health Interview Survey concluded that
11% of Americans ingest calcium supplements on a daily
basis (739). Females account for 80% of this population,
mostly to ensure supply after menopause (739). Calcium
salts exist in multiple formulations. The most commonly
used salts are calcium carbonate, calcium citrate, calcium
lactate, and calcium gluconate. Calcium carbonate is the
most widely used formulation, because it contains the high-
est percentage of elemental calcium per weight (40%),
which equates to small tablet size and easier ingestion (997).
In comparison, calcium citrate contains 21% elemental cal-
cium, calcium lactate 14%, and calcium gluconate 9%
(997). However, the calcium salts do not only differ in their
calcium fraction, but are massively divergent with regard to
their solubility in water. Calcium carbonate is the least wa-
ter-soluble salt at a neutral pH. For example, calcium citrate
dissolves 17 times more readily in water than calcium car-
bonate (997). Very fundamental in vitro solubility experi-
ments have shown that after 1 h in 500 ml of water only 1%
of the initial 500 mg of calcium carbonate are dissolved at
37°C (997). The solubility of calcium carbonate can be
greatly improved by an acidic environment (390, 997). Ad-
justing the pH to 5.5 in the same experiment dissolves 86%
of the calcium carbonate; further lowering it to 2.5, a value
that can be expected in the stomach, increases the dissolved
fraction to 100%. Given these differences in solubility, a
plethora of studies have investigated the bioavailability of
the various calcium salts, mostly focusing on the difference
between calcium carbonate and calcium citrate. Again, the
conclusions are heterogenic. Several studies suggest that
calcium carbonate is absorbed less effectively than the more
soluble calcium citrate (422, 438, 439, 789), while others
conclude that there is no difference in bioavailability (432,
433, 520, 547, 831, 832, 891, 997, 1038). A detailed anal-
ysis of the individual trials is beyond the scope of this re-
view. It suffices to say that there is strong variability in the
experimental methods (direct absorption measurements vs.
measurement of postprandial serum calcium vs. urine ex-
cretion) and design of the studies (populations; administra-
tion in the fasting state vs. with a meal). A confounding
factor to the results of these studies may be the gastric pH at
the time of the measurement. As discussed earlier, calcium
carbonate is not very soluble at more alkali pH values,
which may have implications for patients using these sup-
plements while on PPI therapy (997). Furthermore, meals
dramatically affect gastric pH and may change the bioavail-
ability of the supplements. Indeed, there seems to be a cor-
relation between gastric pH and the absorbability of cal-
cium carbonate. The first observation indicative of this as-
sociation was made by Ivanovich et al. in the late 1960s

(520). The group reported that absorption of calcium car-
bonate was severely impaired in four male patients suffering
from achlorhydria (520). Compared with five control sub-
jects, who absorbed between 9 and 18% of the ingested
calcium carbonate, these patients only absorbed 0–2%. In-
terestingly, when gastric acid secretion of one of these pa-
tients was stimulated by administration of betazol hydro-
chloride (a histamine analog), calcium carbonate absorp-
tion rose from 2 to 10% (520). This investigation somewhat
spawned the entire controversy of whether gastric acid is
necessary to absorb calcium effectively from the intestine. A
similar investigation was conducted later by Recker
(891) in a larger sample of achlorhydric patients. The
investigator concluded that 1) control subjects absorb
calcium carbonate and calcium citrate equally well,
2) but that achlorhydric patients lose their capability to
absorb calcium carbonate, while calcium citrate absorp-
tion is increased (presumably through compensatory up-
regulation of the absorption via vitamin D) (891). It is
important to mention that these absorption assays were
conducted in the fasting state. When the achlorhydric
patients ingested the calcium carbonate salt together with
a meal, their calcium uptake normalized. It cannot be
conclusively answered which factor of the meal was re-
sponsible for the increase, as several food components,
such as fiber and protein, are known to affect calcium
uptake. However, the authors speculated that the pH
(5.8) of the meal was sufficiently low to dissolve the
ingested calcium carbonate (891). Furthermore, a previ-
ously cited study that demonstrated decreased calcium
absorption under PPI therapy employed calcium carbon-
ate as source of calcium for the conducted measurements
(807). Patients with gastric bypass surgery also absorb
calcium carbonate less effectively than calcium citrate
(1089). The importance of acid for the absorption of
calcium carbonate was also demonstrated in the previ-
ously discussed achlorhydric CCK2 (�/�) mouse model
(963). The osteoporotic phenotype and secondary hyper-
parathyroidism in these achlorhydric mice could only be
fully rescued by a high-calcium gluconate (2%) diet, but
not by a high-calcium carbonate (2%) diet (963). In the
light of these reports, it is evident that although the bio-
availability of calcium salts in the healthy individual may
be equal, an impairment of acid secretion has a negative
effect on the bioavailability of calcium carbonate, pre-
sumably because of decreased solubility. Given the fact
that calcium carbonate is the most commonly used for-
mulation for calcium substitution therapy, these findings
may partially account for the statistical correlation be-
tween PPI use and the increased risk of sustaining frac-
tures.

Another factor that needs to be taken into consideration
when assessing solubility of calcium salts is the PCO2

(390). In the local milieu of the duodenum, the PCO2 can
reach values of up to 300 mmHg, resulting from the
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pancreatic secretion of bicarbonate (929). Solubility ex-
periments of calcium carbonate have shown that a high
PCO2 negatively affects its solubility, as the carbonate
enters equilibrium with CO2 (390). Compared with other
calcium salts, the particularly low bioavailability of cal-
cium carbonate in acid suppressed patients may thus be a
compounded effect of reduced acid secretion and a high
duodenal PCO2.

D. The Endocrine Stomach and
Calcium Homeostasis

Apart from being a mere acid secretory organ, the stomach
also plays an important role as an endocrine organ. It
should be noted that all of the aforementioned surgical or
pharmacological interventions, i.e., gastrectomies, vagoto-
mies, or pharmacological acid suppression therapy, will in-
evitably impact the endocrine functions of the stomach. It is
therefore plausible that not only the changes in intragastric
pH affect the absorption of calcium, but that the dysregu-
lation of the endocrine stomach is responsible for changes in
calcium homeostasis. The following section will address
how hormones that are secreted by the stomach may impact
calcium and bone homeostasis.

1. Ghrelin

Ghrelin has been discovered fairly recently (1999) by Ko-
jima and colleagues and is mainly implicated in regulating
food intake in the hypothalamus (588, 777). Ghrelin levels
are inversely correlated with body mass and elevated in
conditions of fasting, such as anorexia nervosa (377). Ghre-
lin is mainly synthesized and secreted in a pulsatile manner
by special neuroendocrine cells (P/D1 cells) in the fundic
region of the stomach (242, 777). The influence of ghrelin
on gastric acid secretion is discussed in a separate section
(see section IIB5E). A few years after its discovery, it was
shown that ghrelin can also directly affect osteoblasts (254,
357, 576, 691). Ghrelin induces osteoblast proliferation
and differentiation and inhibits their apoptosis (357, 576,
691, 1141). It is not entirely clear whether this effect is
mediated via the ghrelin surface receptor, the growth hor-
mone secretagogue receptor 1a (GHS-R1a), or not. While
the receptor is expressed in rat and murine osteoblasts and
its pharmacological inhibition abolishes the effects of ghre-
lin on differentiation and proliferation, no GHS-R1a
mRNA could be detected in a human osteoblast cell line
(254, 357, 691). It should be noted that this effect is inde-
pendent of growth hormone (GH). Ghrelin serves as a po-
tent stimulator of GH secretion from the pituitary gland,
which in turn acts as an activator of osteoblasts through the
GH/IGF-I axis. However, the observations that 1) pharma-
cological inhibition of GHS-R1a attenuates the effects of
ghrelin and that 2) GH-deficient rats are still sensitive to
ghrelin, suggest a direct effect on osteoblasts (357). In vivo,
the activation of osteoblasts translates to an increase in

bone mineral density (BMD) in rat and murine models (261,
357). Ghrelin also promotes the formation of new bone
following injury (261). For example, mice that received a
standardized bone injury demonstrated 1.6 times more new
bone surface if treated with ghrelin compared with control
animals (261).

Several studies aimed to identify a link between serum ghre-
lin levels and BMD in human populations. The most recent,
and one of the largest (n � 707 subjects), investigation
assessed BMD with peripheral quantitative computed to-
mography (pQCT). This technique allows for separate
analysis of trabecular and cortical bone. The results showed
a positive correlation between ghrelin and trabecular BMD
in elderly men and women (775). A different large-scale
study, investigating a similar cohort (n � 977) found no
association using dual-energy X-ray and single-photon ab-
sorptiometry (1157). These techniques, however, do not
permit a discrimination between cortical and trabecular
bone. Other small-scale studies also came to contradictory
conclusions (388, 811). The reason for these discrepancies
is elusive. Since the formation of trabecular bone represents
a more dynamic process, its direct measurement may be
more sensitive to subtle changes than overall bone density
measurement (775). Baseline plasma ghrelin levels were
also shown to be inversely correlated to type 1 collagen �
C-telopeptide (�CTX), a marker for bone resorption (501).

The source of ghrelin represents another potential caveat. In
vitro studies suggest that osteoblasts can also synthesize
ghrelin (254, 357). Ghrelin was identified on the mRNA
and protein level by two investigations (254, 357). A differ-
ent group did not find evidence for ghrelin in osteoblasts
(214). This has important implications, as ghrelin may be
secreted in an auto-/paracrine fashion, which would make
plasma ghrelin levels less significant for osteoblast activa-
tion. On the other hand, (partial) gastrectomy significantly
decreases plasma ghrelin concentrations, which could con-
tribute to postgastrectomy osteopenia, although these may
just be two independent factors. Total gastrectomy causes a
drop in plasma ghrelin levels by as much as 70% (528).
Partial gastrectomy also severely decreases plasma ghrelin;
however, levels normalize depending on the type of resec-
tion to 48–88% of the preoperative levels due to compen-
satory production in the remaining gastric mucosa (528).
This recovery already occurs after 7days. It thus remains to
be elucidated if the slightly decreased ghrelin levels after
small gastric resections can account for the long-term phe-
nomenon of postgastrectomy osteopenia. Furthermore, in
mice, the reduction of bone mass after gastrectomy cannot
be rescued by exogenous administration of ghrelin (277).
Ghrelin administration did also not affect markers of bone
resorption in gastrectomized patients, although these pa-
rameters were only measured very acutely 4 h after ghrelin
infusion (501). So far, no data on the effect of chronic
ghrelin treatment on BMD are available.
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Although decreased ghrelin levels could in theory be a con-
tributing factor to the reduction of bone mass following
gastrectomy, it is unknown if PPIs can directly affect ghrelin
levels. A potential link between PPI-related fractures and
ghrelin levels remains to be investigated. An indirect asso-
ciation may be present in patients with Helicobacter pylori
infections. These infections represent a common indication
for PPI intake and were suggested to coincide with reduced
ghrelin in plasma and the gastric mucosa (527). Given the
recent discovery of ghrelin’s impact on osteoblast function,
many questions still remain to be answered. It is, however,
clear that our view of the stomach as a mere acid secretory
pouch needs to be expanded to a new level.

2. Gastrin

Gastrin represents one of the main acid secretagogues (see
sect. IIB2). It is secreted by specialized G-cells in the antrum
of the stomach and the duodenum. The released gastrin
enters the circulation and induces acid secretion in gastric
parietal cells via the CCK2 receptor. It has been hypothe-
sized fairly early that plasma gastrin may have an impact on
bone metabolism. Injection of gastrin and its synthetic an-
alog pentagastrin was shown to decrease plasma calcium
levels in pigs and rats in the 1970s (222, 980). This effect
was attributed to gastrin-stimulated release of calcitonin
from the thyroid gland. Indeed, pentagastrin was shown to
be a potent stimulator of calcitonin secretion in various
species and is still in clinical use to evaluate thyroid C-cell
hyperplasia and medullary carcinomas (155, 156, 226, 441,
829). Although a clinical correlation between plasma gas-
trin levels and plasma calcitonin has been demonstrated by
one study in patients with Zollinger-Ellison syndrome (hy-
pergastrinemic patients) and in pigs, it is unclear if native
gastrin, i.e., not pentagastrin, acts as an important secreta-
gogue for calcitonin in humans (224, 1020). In fact, other
investigations found no association between gastrin and
calcitonin levels in other cohorts (122, 454).

At least in the rat, the hypothesis of the gastrin-calcitonin
axis has been severely challenged. Although gastrin de-
creases plasma calcium levels in rats, the same effect occurs
in (para)thyroidectomized animals, suggesting that calci-
tonin is not involved in this process (980). Furthermore,
cultured rat thyroid cells could not be stimulated to release
calcitonin if incubated with gastrin (225). Fundectomy- and
omeprazole-induced hypergastrinemia also did not affect
calcitonin levels in rats (843, 927). Interestingly, hypocal-
cemia after gastrin injection could not be induced in rats
that had been (para)thyroidectomized and gastrectomized
(844, 981). This observation led to the conclusion that gas-
trin may stimulate the release of an unknown substance
from the rat stomach, which in turn exerts calcitropic ac-
tivity. In accordance with this hypothesis, mucosal extracts
from rat stomachs were shown to have the same hypocal-
cemic effects as gastrin and to stimulate uptake of radiola-
beled calcium into the bone (844). These findings were also

replicated in chicken (842). The unknown hormone was
tentatively named ”gastrocalcin“ (844). When ghrelin was
discovered, it was speculated that it might represent a can-
didate hormone for gastrocalcin. However, unlike gastro-
calcin, ghrelin is not under gastrin control, making this
proposition unlikely (276). Subsequent investigations sug-
gested that the origin of gastrocalcin were the gastric ECL
cells. ECL extracts can indeed trigger a calcium second mes-
senger response in osteoblast (629, 630). Yet, functional
evidence for gastrocalcin-mediated osteoblast activation is
still lacking. A recent report postulates that parathyroid
hormone-like hormone (PTHLH) may in fact be gastrocal-
cin (676). PTHLH exerts similar physiological effects as
PTH by sharing a common receptor and is commonly ele-
vated in paraneoplastic syndromes (1056). PTHLH has
been identified in ECL cells, and its transcription has been
shown to be inducible by gastrin in parietal cells (523, 676).
Of note, PTH causes effects opposite to those assigned to
gastrin and gastrocalcin, namely, hypercalcemia. Further
studies will thus be needed to corroborate this hypothesis.

Whatever the exact effector hormone of gastrin may be,
changes in gastrin levels cannot entirely explain the clinical
phenomenon of postgastrectomy osteopenia and PPI-re-
lated fractures. Although vagotomy and PPIs undoubtedly
increase serum gastrin levels through a negative-feedback
mechanism, most partial and all total gastrectomies result
in hypogastrinemia. Yet both hyper- and hypogastrinemic
conditions have similar outcomes, i.e., osteopenia and in-
creased risks of fractures. It is, of course, plausible that
different factors contribute to this outcome in each individ-
ual group. Gastrin may be involved in certain pathologies,
but given that its true impact on bone metabolism is some-
what elusive, this assumption remains speculative.

Acid suppression

?

Gastrin

Pancreastatin Calcitonin

Calcium solubility

Intestinal absorption

PTH

FIGURE 9. Model summarizing the potential impact of acid sup-
pression on calcium homeostasis.
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3. Pancreastatin

Pancreastatin is a cleavage product of chromogranin A that
was initially isolated from porcine pancreas (1072). Gastric
ECL cells are also known to harbor significant amounts of
chromogranin A and pancreastatin. Pancreastatin is se-
creted together with histamine from ECL cells in response
to their neuroendocrine stimulation (see sect. IIB3) (176). In
rat, it has been shown that the serum pancreastatin levels
correlate with the secretory status of ECL cells. States that
enhance ECL cell secretion, such as gastrin infusion, re-
sulted in elevated serum pancreastatin levels (411). In ac-
cordance with this hypothesis, and of special relevance for
the topic of this review, PPI therapy also resulted in in-
creased serum pancreastatin levels (the ECL is stimulated by
gastrin, which in turn is released in response to high gastric
pH) (411). These observations led the investigators to con-
clude that ECL cells are a major contributor to the serum
levels of pancreastatin in the rat and that these levels change
in parallel with ECL cell secretion (411). This is also cor-
roborated by the observation that gastrectomy reduces pan-
creastatin levels in rats (644).

Pancreastatin exerts a variety of metabolic effects. Apart
from influencing energy metabolism, pancreasstatin was
shown to affect the secretion of PTH from the parathyroid
gland. In isolated bovine and porcine parathyroid cells,
pancreastatin has a clear inhibitory effect on PTH secretion
(282, 317, 911). The suppression of PTH functions on a
transcriptional level (1211). Reduced PTH secretion in turn
would have a potential impact on calcium and bone metab-
olism. Whether the same observations are valid for humans
is less clear, as pancreastatin failed to inhibit PTH secretion
from isolated human parathyroid cells (911). Regardless,
the volume of data on pancreastatin and its influence on the
parathyroid gland is very small, and further investigations
would be necessary to establish this intriguing link. Apart
from potential modulation of parathyroid secretion, pan-
creastatin has also been shown to have an inhibitory effect
on gastric acid secretion (655).

In summary, it should be noted that the stomach secretes
not only acid, but also hormones that have been shown to
directly alter calcium and/or bone homeostasis. The secre-
tion of these hormones depends on the neuroendocrine ma-
chinery that also regulates acid secretion. It is therefore
plausible that the correlation between states of impaired
acid secretion and impaired bone mineralization is multi-
factorial by depending on intragastric pH and serum levels
of gastric hormones (FIGURE 9).

VI. CONCLUSIONS

We set out in this review to demonstrate that gastric and
intestinal physiology are intertwined to regulate calcium
absorption and secretion to maintain bone health. In this

review we have focused on the important role calcium plays
as a first and second messenger in the maintenance of bone
health. By relying on a complex series of receptors, chan-
nels, and transport proteins, calcium is tightly controlled at
the cellular and tissue level to ensure its bioavailability to
bone. Modulations to any of these pathways by disease,
mutation, or pharmaceutical perturbation can lead to clin-
ical changes in bone health.
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