


works in endocytosis at the interface between CME and
actin dynamics. HIP1 also interacts and increases the tran-
scriptional activity of the androgen receptor (359, 525).
These latter findings are particularly relevant in light of the
demonstrated involvement of HIP1 in cancer, and in par-
ticular in prostate cancer in which the role of androgen
receptor is paramount (636, 637). Finally, the clathrin
heavy chain also can be found in the nucleus, where it
specifically enhances TP53-dependent transactivation by
binding to the TP53-responsive promoter and stabilizing
the interaction between TP53 and P300 histone acetyltrans-
ferase (193, 567).

4) Retrograde delivery of transcriptionally relevant cargo
(FIGURE 8, E–G). A number of membrane-anchored
growth factor receptors and growth factors display nu-
clear localization, and their presence in that location has
been linked to control of transcription (reviewed in Ref.
106, 827). Evidence is particularly compelling for mem-
bers of the EGFR family and for their cognate ligands.
The major question, in this case, is how membrane-
bound protein can be delivered to the nucleus. Evidence
has been provided that two membrane-anchored growth
factors of the EGF family, proAR and pro-HB-EGF, are
delivered, in a signaling- and endocytosis-dependent
manner, to the inner nuclear membrane (INM), through
a retrograde transport pathway, whose molecular work-
ings have however not been clarified (FIGURE 8, E AND F).
Once on the INM, they can act as chromatin remodeling
agents or sequesterers of transcriptional repressors, re-
spectively (312, 348) (FIGURE 8, E AND F). The situation is
more complex for the EGFR itself, which also exhibits
nuclear localization and possibly acts as a transcription
factor (459) (FIGURE 8G). This property, which is also
shared by other members of the EGFR family of recep-
tors, relies both on the ability of the EGFR to bind di-
rectly to a number of promoters and to transactivate
them, or to bind to well-known transcription factors
(e.g., STAT3, E2F1, STAT5) (reviewed in Ref. 827). The
surprising fact is that EGFR appears to localize to the
nucleoplasm, i.e., in a non-membrane-anchored state. A
number of pieces of evidence are compatible with a
model in which EGFR traffics to the nuclear pore com-
plex in a membrane-bound environment, through some
form of retrograde transport. However, it does so in
association with importin �, which interacts with puta-
tive nuclear localization sequences in the EGFR (and in
the related receptor ERBB-2) (257, 472). Importin � is
responsible for nuclear translocation, by directly associ-
ating with components of the nuclear pore, and might
therefore aid in the translocation of the EGFR through
the pore onto the INM. Interestingly, the translocon
SEC61� also resides on the INM, where it associates with
EGFR, and might be responsible for the extraction of the
receptor from the membrane and its release in the nucle-
oplasm (828) (FIGURE 8G).

One general question is whether the regulation of nuclear
events represents a “moonlighting” function of some endo-
cytic proteins or betrays a deeper level of integration be-
tween these cellular functions, enabling, for instance, the
efficient transfer of extracellular information to the nucleus.
In some instances, the endocytic and nuclear functions ap-
pear to be mutually exclusive, such as in the case of HIP1
(525). Furthermore, the transcriptional activity of the clath-
rin heavy chain does not require its trimerization domain,
which is instead indispensable for its endocytic coat protein
function (567), again arguing in favor of distinct endocytic
and nuclear functions. On the other hand, there are in-
stances in which the endocytic and the nuclear transcrip-
tional functions are linked, as it is the case for ARRs (see
below, and FIGURE 8D) or for APPL, which, upon ligand
stimulation, travel through the endocytic routes as bona
fide trafficking molecules, and eventually translocate to the
nucleus to regulate transcription (523), or for membrane-
anchored growth factor and receptors for which retrograde
transport directly implicates endocytosis as the vehicle of
nuclear delivery of transcriptionally relevant cargo. As we
will discuss at the end of the review, scenarios can also be
envisioned in which the apparent heterogeneity of the func-
tions of some endocytic proteins can be reconciled.

2. ARRs and the control of transcriptional programs

The ARRs were originally discovered for their role in the
desensitization of GPCRs. GPCR, once activated by their
ligands, essentially work as GEFs for heterotrimeric G pro-
teins (FIGURE 1A); this activity constitutes one of their major
modality of signal transmission. Following activation, how-
ever, these receptors also become serine and/or threonine
phosphorylated, which allows high-affinity binding of
ARRs. The binding of ARRs precludes the receptor from
further coupling with G proteins (desensitization). Further-
more, ARRs bind to clathrin and clathrin adaptors, thereby
removing the receptor from the cell surface. Thus ARR-
mediated desensitization and endocytosis represent short-
and long-term mechanisms of GPCR attenuation, respec-
tively (reviewed in Ref. 485; see also FIGURE 1A).

Recent findings have considerably changed this relatively
simple outlook. It was found that ARRs have a dual role, as
attenuator and propagators of signaling. This “signaling”
role is in part connected to the endocytic role (along the
lines and the principles reviewed in sections III, A and D,
and VB), but largely constitutes an effector role in itself.
The current view, therefore, is that GPCRs switch between
two modalities of signaling: G protein-dependent signaling
and ARR-dependent signaling, with the latter modality also
being capable of attenuating the former. ARR-mediated
signaling impinges on a number of relevant circuitries, in-
cluding regulation of non-receptor tyrosine kinases, of
ERKs and of E3 ligases (not reviewed in detail here, but see
Ref. 485 and references therein).
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A sizable part of the effector function of ARRs is connected
to their ability to modulate transcription. In some cases, this
is the consequence of their regulation of transcriptionally
relevant signaling pathways. For example, ARRs negatively
regulate transcription activated by the ERK (252, 438,
835), NF�B (208, 246, 482, 826, 850), and STAT1 (532)
pathways, by titering out critical components of these path-
ways. In other cases, the transcriptional role seems more
directly connected with the modulation of real transcription
factors. ARR binding to MDM2, the major E3 ligase re-
sponsible for TP53 degradation, inhibits the ubiquitination
of TP53, therefore stabilizing it, with ensuing enhancement
of TP53 signaling (820).

Even more importantly, perhaps, it has been shown that
ARRs undergo nucleocytoplasmic shuttling, exhibiting a
distinct nuclear phase (FIGURE 8D). The shuttling is directly
controlled by signaling (it follows activation of GPCRs) and
leads to the formation of ARR-based complexes that con-
tain the P300 histone acetyltransferase. Since ARRs can
also directly bind to promoters (such as the P27, the FOS, or
the BCL2 promoter), they might work as chaperones for
P300, allowing increased local histone H4 acetylation and
stimulating transcription (380, 552, 714) (FIGURE 8D). In
addition, in zebrafish, it has been shown that ARRs bind
and sequester the polycomb group recruiter YY1, in turn
leading to a release of the polycomb-mediated repression of
the CDX4-HOX pathway, involved in the specification of
the hematopoietic lineage (873). These studies have proba-
bly uncovered only the tip of the iceberg, as a recent pro-
teomic study revealed that around one-third of the ARR
interactome consists of nucleic acid-binding proteins (861).
Thus ARR-controlled transcriptional regulation is an area
in which we should witness important and surprising prog-
ress in the near future.

The signaling role of ARRs (including its transcriptional
role) is very relevant not only to biology, but also to
medicine. Currently, perhaps half of all drugs in clinical
use are directed to modulate GPCR function. In addition,
there is evidence that the two major signaling modalities
of GPCRs (G proteins and ARRs) can be pharmacologi-
cally uncoupled, leading to the possibility that “biased
GPCR drugs” might be developed for clinical use in many
diseases.

3. Multiple points of contact between TP53 and
endocytosis

We have reviewed evidence that clathrin and ARRs can
control the transcriptional activity of TP53. Recently, one
additional connection emerged, as it was shown that
NUMB (an endocytic protein, reviewed in sect. VIIC1) con-
trols the cellular levels of TP53 (131). This action of NUMB
is determined by its ability to bind to and inhibit the E3-
ligase MDM2, in a circuitry reminiscent of the ARR/TP53
one (820). The regulation of MDM2 by NUMB occurs in

the context of a NUMB/TP53/MDM2 tricomplex (FIGURE

8H) (131). The functional ablation of NUMB, in a model of
normal human mammary epithelial cells, results in reduced
TP53 levels and activity, with impaired apoptosis, DNA-
damage, and cell cycle checkpoint activation response
(131).

The potential relevance of these findings is that they project
a role for the NUMB:TP53 axis in the maintenance of the
SC compartment, a cellular territory in which the impact of
endocytosis and recycling is paramount, as discussed. Inves-
tigations of the role of TP53 in SCs has so far focused on the
induction of cellular senescence by TP53, which in turn can
be linked to the depletion of SCs and to organism aging
(reviewed in Ref. 884). However, a role for TP53 as a cell-
autonomous asymmetric kinetics control gene has been
proposed (712), which might be due to its involvement in
regulating immortal DNA strand cosegregation, a phenom-
enon that is closely linked to ACD (634). This function
might be directly connected to the asymmetric inheritance
of NUMB, as supported by findings that: 1) NUMB is a
critical determinant of ACD, 2) NUMB directly controls the
level of TP53 (131), and 3) in mammary SCs, the genetic
removal of TP53 skews the cell division from an asymmetric
to a symmetric mode, with both daughter cells acquiring a
proliferative destiny (FIGURE 8I) (127).

One major question remains to be resolved: Does the con-
trol of NUMB over TP53 occur in the nucleus, since NUMB
also shuttles in and out of the nucleus (373), or in the
cytosol, possibly in association with biomembranes. This
latter occurrence is not implausible, since a number of non-
nuclear functions of TP53 are known, mostly connected
with autophagy and apoptosis (reviewed in Ref. 270). In
addition, in section IVB, we have reviewed evidence arguing
for transcriptional and nontranscriptional functions of
TP53 in endocytosis and traffic; thus, based on available
knowledge, the existence of a feedback loop linking endo-
cytosis ¡ TP53 ¡ endocytosis is not inconceivable. In such
a case, the analysis of the connections between endocytic
pathways and TP53 will be an important area of future
developments.

VIII. ENDOCYTOSIS AND DISEASES

The pervasiveness of endocytosis in virtually every program
of cell regulation predicts that alterations of the endocytic
machinery, or of intracellular sorting mechanisms at large,
should play an important role in several human pathologi-
cal conditions. This is indeed the case, and the pathogenesis
of many diseases can be traced back to subversion of intra-
cellular traffic. Here, we will briefly highlight the impact of
endocytosis on human diseases, with particular emphasis
on genetic diseases and cancer.
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A. Endocytic Trafficking and Human Genetic
Diseases

Alterations of intracellular traffic have been described in a
vast array of human diseases. They include defects at the
level of the membrane-associated protein sorting and lipid
trafficking machineries. Essentially all stations of the endo-
cytic pathway are affected, from the internalization step to
endosomal sorting, to lysosomal biogenesis and function.
The endocytic proteins involved can be mutated or altered
in their level of expression (overexpressed or underex-
pressed) or become the target of autoimmune responses.
This, in turn, results in a role for endocytic proteins in
several inherited, neurological, metabolic, autoimmune, in-
fectious, and hyperproliferative diseases, among which
there are many pathologies of high social impact such as
Alzheimer’s disease, diabetes, or cancer (reviewed in Refs.
16, 425, 856, respectively). A comprehensive discussion of
endocytic alterations and human diseases is impossible
here; however, the interested reader is referred to reviews on
this specific subject in which a systematic classification of
endocytosis (or traffic)-related pathologies has been de-
scribed (23, 24, 624); in addition, the journal Traffic main-
tains a collection of published papers on this topic in a
virtual issue “Diseases of membrane traffic” (http://
www.traffic.dk/virtual_issues.asp).

In TABLE 2, we report an updated list of alterations of en-
docytic genes in Mendelian disorders, obtained by search-
ing the OMIM (Online Mendelian Inheritance in Man) and
the GENE databases at NCBI with a manually curated list
of 339 genes encoding “endocytic/trafficking and actin reg-
ulator/dynamics proteins” [277 “endocytic/trafficking pro-
teins, including structural/accessory endocytic proteins,
ARF GTPases and their effectors, endocytic and non-endo-
cytic RABs, proteins belonging to the ESCRT complexes,
SNARE proteins, sorting nexins and synaptotagmins, pro-
teins associated with lysosomes or endosomes and impor-
tant for their biogenesis or function, and 62 ”actin regula-
tor/dynamics proteins“ (see legend to TABLE 2 for details)].
Not surprisingly, a sizable number of alterations affect RAB
proteins and RAB regulators/effectors, underscoring the
pivotal master regulator role of these GTPases in the main-
tenance of endocytic and trafficking homeostasis. What is
remarkable, however, is the frequency of alteration of en-
docytic genes in monogenic (Mendelian) disease. Of the 339
genes of our list, 289 are present in OMIM, as of May 2011.
Of these 289 genes, 72 are responsible for monogenic dis-
eases, corresponding to a frequency of �25% (FIGURE 9A).

We sought to compare this frequency to that of the altera-
tion of all human genes in Mendelian disorders. This is not
a straightforward task, since public databases do not con-
tain a downloadable list of all human genes responsible for
monogenic diseases. Several efforts have been published,
however, to produce such a manually curated list. In the
most recent one, published in May 2009 (95), genes were

retrieved from OMIM if labeled as disease-causing muta-
tions and then ”contaminants,“ such as non-disease genes
and genes not annotated as ”susceptibility genes,“ were
filtered out. This yielded a list of 2011 genes (95). A more
thorough effort of manual curation of a list of human
monogenic disease genes (always using the OMIM database
as a starting point) was reported a year earlier in June 2008
(68): this list contained 1,039 distinct genes. While differ-
ences in the two lists likely reflect those in the selection of
the curation criteria, one can reasonably assume that
�1,000 genes and �2,000 genes represent the lower and
the upper limit of human Mendelian disease genes, respec-
tively, at the present state of knowledge. These genes can be
compared with the total number of human genes
(�20,000), or more conservatively to the number of genes
listed in the OMIM database (�14,000 as of May 2011).
This creates a number of scenarios, depicted in FIGURE 9A,
in which the fraction of all human genes responsible for
monogenic diseases ranges from 5 to 14%. In all cases how-
ever, the frequency of alteration of endocytic genes is vastly
(and very significantly, FIGURE 9A) superior to that of all
human genes: from approximately two- to fivefold more.

The question arises therefore as to what is the meaning of
the enrichment in monogenic disease genes of the class of
”endocytic“ genes. Several characteristics, which distin-
guish disease genes from non-disease genes, have been re-
ported. First, Mendelian disease genes are under strong
functional constraints, as it has been shown that they evolve
more slowly than complex disease genes and non-disease
genes as the result of stronger purifying selection (68, 95).
In addition, disease genes are expressed more heteroge-
neously across tissues than non-disease genes (95). It was
proposed (95) that disease genes, on the whole, are assigned
to more essential functions than non-disease genes, thus
explaining the strong purifying selection. At the same time,
restrictions in the expression patterns allow their mutant
alleles to go through germ-line without causing embryonic
lethality. What is perhaps even more interesting is that dis-
ease genes tend to be older than non-disease genes (95,
175). Once again, a hierarchy might exist with Mendelian
disease genes being older than complex disease genes, which
are in turn older than non-disease genes (95). The fact that
endocytic genes are a class strongly enriched in Mendelian
disease genes, therefore, might mean that they are, on the
average, older and more essential than other genes, a pos-
sibility that would fit well with the major thesis on this
review, i.e., that they shape the eukaryotic cell plan, as will
be discussed in section X. We directly tested this hypothesis
by analyzing the ”age“ distribution of endocytic genes, with
respect to all other human genes, using the gene classes
identified by Cai et al. (95). As shown in FIGURE 9B, endo-
cytic genes were remarkably, and very significantly, en-
riched in old genes and depleted in the classes of middle-
aged and young genes.
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Table 2. Alterations of endocytic/trafficking proteins and of actin regulators in human Mendelian disorders (source: OMIM database,
Online Mendelian Inheritance in Man)

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

ACTA1 (*) Actin, alpha 1, skeletal muscle 102610 Nemaline myopathy 3 (161800) 421, 564
The ACTA1 gene encodes skeletal

muscle alpha-actin, the principal
actin isoform in adult skeletal
muscle

Congenital fiber-type disproportion
myopathy (255310)

ACTA2 (*) Actin, alpha 2, smooth muscle,
aorta

102620 Aortic aneurysm, familial thoracic
6 (611788)

276

This actin is an alpha actin that is
found in smooth muscle

ACTC1 (*) Actin, alpha, cardiac muscle 102540 Dilated cardiomyopathy (613424) 504, 533, 571
This actin is an alpha actin that is

found in cardiac muscle
Familial hypertrophic

cardiomyopathy (612098)
Atrial septal defect (612794)

ACTB (*) Actin, beta 102630 Dystonia, juvenile-onset (607371) 622
Actin, beta is a cytoplasmic actin

found in nonmuscle cells
ACTG1 (*) Actin, gamma-1 102560 Deafness, autosomal dominant 20

(604717)
646

Actin, gamma 1 is a cytoplasmic
actin found in nonmuscle cells

ALS2 Amyotrophic lateral sclerosis 2
(juvenile)

606352 Juvenile amyotrophic lateral
sclerosis-2 (205100)

202, 282, 869

GEF for RAB5 (also contains a
RHO-GEF domain)

Juvenile primary lateral sclerosis
(606353)

Infantile-onset ascending hereditary
spastic paralysis (607225)

AP3B1 Adaptor-related protein complex
3, beta 1 subunit

603401 Hermansky-Pudlak syndrome type
2 (608233)

221

Component of the AP-3 clathrin
adaptor complex

AP1S2 Adaptor-related protein complex
1, sigma 2 subunit

300629 X-linked recessive mental
retardation (300630)

107, 766

Component of the AP-1 adaptor
complex

ARL6 ADP-ribosylation factor-like 6 608845 Bardet-Biedl syndrome #3
(209900)

209

Small GTPase of the ARF
subfamily

BIN1 Bridging integrator 1
(amphiphysin II)

601248 Autosomal recessive centronuclear
myopathy (255200)

554

MYC-interacting protein. Involved
in synaptic vesicle endocytosis;
and interacts with dynamin,
synaptojanin, endophilin, and
clathrin

BLOC1S3 Biogenesis of lysosomal
organelles complex-1, subunit 3

609762 Hermansky-Pudlak syndrome
(203300)

535

Component of the BLOC1
complex, required for normal
biogenesis of specialized
organelles of the endosomal-
lysosomal system

CAV1 Caveolin 1 601047 Lipodystrophy, congenital
generalized, type 3 also known
as Berardinelli-Seip syndrome
(612526)

398

Caveolin-1, the major component
of caveolae

Continued
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Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

CAV3 Caveolin 3 601253 Long QT syndrome 9 (611818) 102, 526, 802, 811
Caveolin-3, a muscle-specific

isoform of caveolin
Rippling Muscle Disease (606072)

HyperCKemia (123320)
Muscular Dystrophy, limb-girdle,

type 1C (607801)
CBL Cas-Br-M ecotropic retroviral

transforming sequence
165360 Noonan syndrome-like disorder

(613563)
501, 605

E3 UB ligase
CHM Choroideremia (RAB escort

protein 1)
300390 Choroideremia (300390) 793

(REP-1) Component A of the RAB
geranylgeranyl transferase
holoenzyme. Binds unprenylated
RAB GTPases and then
presents them to the catalytic
RAB GGTase subunit

CHMP4B Chromatin modifying protein 4B 610897 Autosomal dominant progressive
childhood posterior subcapsular
cataract, CTPP3 (605387)

715

Component of ESCRT-III complex
CUBN Cubilin 602997 Megaloblastic anemia-1 (261100) 411

Intestinal receptor for the
endocytosis of intrinsic factor-
vitamin B12

DIAPH1
(*)

Diaphanous homolog 1
(Drosophila)

602121 Deafness, autosomal dominant 1
(124900)

486

DIAPH1 have a role in the
regulation of actin
polymerization in hair cells of
the inner ear.

DNM2 Dynamin-2 602378 Dominant intermediate Charcot-
Marie-Tooth disease (606482)

65, 182, 887

GTPase involved in vesicle fission Autosomal dominant centronuclear
myopathy (160150)

FLNA (*) Filamin A, alpha 300017 Heterotopia, periventricular, X-
linked dominant (300049)

47, 251, 417, 654, 655, 786

FLNA is an actin-binding protein
that regulates reorganization of
the actin cytoskeleton by
interacting with integrins and
transmembrane receptor
complexes

Otopalatodigital syndrome types I
(311300) and II (304120)

X-linked cardiac valvular dysplasia
(314400)

FG syndrome-2 (300321)
Frontometaphyseal dysplasia

(305620
Melnick-Needles syndrome

(309350)
Chronic idiopathic intestinal

pseudoobstruction (300048)
Terminal osseous dysplasia

(300244)

Continued
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Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

FLNB (*) Filamin B, beta 603381 Spondylocarpotarsal syndrome
(272460)

63, 409

FLNB is an actin binding protein
that interacts with glycoprotein
Ib alpha as part of the process
to repair vascular injuries

Autosomal dominant Larsen
syndrome (150250)

Type 1 atelosteogenesis (108720)
Type 3 atelosteogenesis (108721)
Boomerang dysplasia (112310)

FLNC (*) Filamin C, gamma 102565 Myopathy, myofibrillar, filamin c-
related (609524).

812

FLNC, as other filamin proteins, is
an actin-binding protein that
regulates reorganization of the
actin cytoskeleton

GDI1 GDP dissociation inhibitor 1 300104 Nonspecific, x-linked mental
retardation (300104)

146

(RABGD1A) Slows the rate of dissociation of
GDP from RAB proteins and
release GDP from membrane-
bound RABs

GSN (*) Gelsolin 137350 Amyloidosis, Finnish type (105120) 506
Gelsolin binds to the “plus” ends

of actin monomers and
filaments and functions in both
assembly and disassembly of
actin filaments

HFE Hemochromatosis 613609 Hereditary hemochromatosis
(235200)

211

Membrane protein that
associates with �2-
microglobulin and regulates the
interaction of the TFR with TF

HPS1 Hermansky-Pudlak syndrome 1 604982 Hermansky-Pudlak syndrome
(203300)

566

Component of the BLOC3, 4, and
5 complexes, required for
normal biogenesis of specialized
organelles of the endosomal-
lysosomal system

HPS3 Hermansky-Pudlak syndrome 3 606118 Hermansky-Pudlak syndrome
(203300)

15

Contains a potential clathrin-
binding motif, consensus
dileucine signals, and tyrosine-
based sorting signals. May play
a role in organelle biogenesis

HPS4 Hermansky-Pudlak syndrome 4 606682 Hermansky-Pudlak syndrome
(203300)

762

This protein appears to be
important in organelle
biogenesis and is similar to the
mouse “light ear” (“LE” or
HSP4) protein

Continued
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Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

HPS5 Hermansky-Pudlak syndrome 5 607521 Hermansky-Pudlak syndrome
(203300)

877

This protein may play a role in
organelle. It interacts with
Hermansky-Pudlak syndrome 6
protein and may interact with
the cytoplasmic domain of
integrin, �3

HPS6 Hermansky-Pudlak syndrome 6 607522 Hermansky-Pudlak syndrome
(203300)

877

This protein may play a role in
organelle biogenesis. It
interacts with Hermansky-
Pudlak syndrome 5 protein

INF2 (*) Inverted formin 2 610982 Focal segmental
glomerulosclerosis 5 (613237)

86

IFN2 functions in polymerization
and depolymerization of actin
filaments.

LAMP2 Lysosomal-associated membrane
protein 2

309060 Danon disease (300257) 559

This glycoprotein provides
selectins with carbohydrate
ligands. It may also function in
the protection, maintenance,
and adhesion of the lysosome

LDLR Low-density lipoprotein receptor 606945 Familial hypercholesterolemia
(143890)

150, 443

Low-density lipoprotein receptor
LDLRAP1 Low-density lipoprotein receptor

adaptor protein 1
605747 Familial autosomal recessive

hypercholesterolemia (603813)
20, 249

(ARH) Clathrin adaptor
LYST Lysosomal trafficking regulator 606897 Chediak-Higashi syndrome

(214500)
45

Regulates intracellular protein
trafficking to and from the
lysosome

MLPH Melanophilin 606526 Griscelli syndrome type 3
(609227)

515

RAB27A effector. Forms a
ternary complex with GTP-
RAB27A and myosin Va

MCOLN1 Mucolipin 1 605248 Mucolipidosis IV (252650) 46
Member of the transient receptor

potential (TRP) cation channel
family. It localizes to
intracellular vesicular
membranes, and functions in
the late endocytic pathway and
in lysosomal exocytosis

MYO1A, Myosins (IA, VI, and XVA) 601478 Autosomal dominant nonsyndromic
deafness. (607841, 606346,
600316)

176, 313, 816

MYO6, Molecular motors 600970
MYO15A 602666
MYO5A Myosin VA 160777 Griscelli syndrome type 1

(214450)
515

Molecular motor

Continued
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Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

MYO7A Myosin VIIA 276903 Usher syndrome type I (276900) 4
Molecular motor

NDRG1 N-myc downstream regulated 1 605262 Charcot-Marie-Tooth disease, type
4d (601455)

337, 376

RAB4A effector protein involved in
E-cadherin recycling

NPC1 Niemann-Pick disease, type C1
and C2

607623 Niemann-Pick type C (NPC).
Approximately 95% of cases are
caused by mutations in the
NPC1 gene (257220); 5% are
caused by mutations in the
NPC2 gene (607625)

798

NPC2 Related proteins that reside in the
limiting membrane of
endosomes and lysosomes and
mediate intracellular cholesterol
trafficking via binding of
cholesterol to their NH2-
terminal domain

601015

OTOF Otoferlin 603681 Neurosensory nonsyndromic
recessive deafness 9 (601071)

799

Otoferlin is the key calcium ion
sensor involved in the Ca2�-
triggered synaptic vesicle-PM
fusion and in the control of
neurotransmitter release at
these output synapses

PLEKHM1 Pleckstrin homology domain
containing, family M (with RUN
domain) member 1

611466 Autosomal recessive osteopetrosis
6 (611497)

797

PLEKHM1 colocalizes with RAB7
to late endosomal/lysosomal
vesicles, and may have critical
function in vesicular transport

PSEN1 Presenilin 1 104311 Early-onset familial Alzheimer
disease-3 (607822)

713

Presenilins regulate APP and
NOTCH processing through
their effects on �-secretase

PTRF
(CAVIN1)

Polymerase I and transcript
release factor

603198 Lipodystrophy, congenital
generalized, type 4 (613327)

297

The PTRF gene encodes cavin, an
essential factor in the
biogenesis of caveolae

RAB7A RAB7A, member RAS oncogene
family

602298 Charcot-Marie-Tooth Type 2B
(602298)

752

Small GTPase of the RAB
subfamily

RAB23 RAB23, member RAS oncogene
family

606144 Carpenter syndrome (201000) 363

Small GTPase of the RAB
subfamily

RAB27A RAB27A, member RAS oncogene
family

603868 Griscelli syndrome type 2
(607624)

(6

Small GTPase of the RAB
subfamily

RAB39B RAB39B, member RAS oncogene
family

300774 X-linked mental retardation
(300271)

253

Small GTPase of the RAB
subfamily
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Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

RAB3GAP1 RAB3 GTPase activating protein
subunit 1 (catalytic)

602536 Warburg Micro syndrome
(600118)

8

Catalytic subunit of a RAB GTPase
activating protein; it specifically
regulates the activity of
members of the RAB3
subfamily

RIMS1 Regulating synaptic membrane
exocytosis 1

603649 Cone-rod dystrophy-7 (603649) 367

RAB3-interacting protein molecule
1. Likely functions as protein
scaffolds that help regulate
vesicle exocytosis during short-
term plasticity

RIN2 RAS and RAB interactor 2 610222 Macrocephaly, alopecia, cutis laxa,
and scoliosis (MACS) syndrome
(613075)

48

Member of the RIN family of RAS
interaction-interference
proteins, which are binding
partners to RAB5. It functions
as a RAB5GEF

ROBLD3 Roadblock domain containing 3 610389 Primary immunodeficiency
(610798)

70

(MAPBPIP/
P14)

Associated with the cytoplasmic
face of late endosomes and
lysosomes. Interacts with
MAPK scaffold protein 1.
Possible role in endosome
biogenesis

SEC23A Sec23 homolog A 610511 Craniolenticulosutural dysplasia
(607812)

81

Essential component of coat
protein complex II (COPII)-
involved in ER to GA transport

SNAP25 Synaptosomal-associated protein,
25 kDa

600322 Attention deficit-hyperactivity
disorder (143465)

214

Involved in vesicle membrane
docking and fusion (SNARE)

SNAP29 Synaptosomal-associated protein,
29 kDa

604202 Cerebral dysgenesis, neuropathy,
ichthyosis, and palmoplantar
keratoderma (CEDNIK) syndrome
(609528)

754

Member of the SNAP25 family
(SNAREs), involved in vesicle
membrane docking and fusion

SPG20 Spastic paraplegia 20 (Troyer
syndrome)

607111 Troyer syndrome or autosomal
recessive spastic paraplegia 20
(275900)

588

This protein contains a MIT
(microtubule interacting and
trafficking molecule) domain,
and it is implicated in regulating
endosomal trafficking and
mitochondria function. Also
shown to function in the
degradation and intracellular
trafficking of EGFR

Continued
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Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

STX11 Syntaxin 11 605014 Familial hemophagocytic
lymphohistiocytosis 4 (603552)

669

Involved in vesicle membrane
docking and fusion (SNARE)

STXBP1 Syntaxin binding protein 1 602926 Early infantile epileptic
encephalopathy 4 (612164)

677

Neural-specific, syntaxin-binding
protein

STXBP2 Syntaxin binding protein 2 601717 Familial hemophagocytic
lymphohistiocytosis 5 (613101)

137

Member of the STXBP/UNC-18/
SEC1 family. Involved in protein
trafficking from the Golgi
apparatus to the PM. STXBP2
interacts with STX11

SYN1 Synapsin I 313440 Epilepsy, X-linked, with variable
learning disabilities and behavior
disorders (300491)

248

Member of the synapsin family,
neuronal phosphoproteins
which associate with the
cytoplasmic surface of synaptic
vesicles and modulate
neurotransmitter release

SYNJ1 Synaptojanin 1 604297 Chromosome 21q22-linked bipolar
disorder (125480)

676

A phosphoinositide phosphatase
that regulates levels of
membrane PIP2

TSC2 Tuberous sclerosis 2 191092 Tuberous sclerosis complex (TSC).
�10-30% of cases of TSC are
due to mutations in the TSC1
gene, the remainder to
mutations in the TSC2 gene
(613254)

120

Regulator of the MTOR pathway
VAMP7 Vesicle-associated membrane

protein 7
300053 Bipolar disorder, an X-linked form

of manic-depressive illness that
affects females and causes a
deficiency of male-to-male
transmission (309200)

541

SNARE protein. Localizes to late
endosomes and lysosomes and
is involved in the fusion of
transport vesicles to their
target membranes

VAPB VAMP (vesicle-associated
membrane protein)-associated
protein B and C

605704 ALS8, an atypical form of ALS
(amyotrophic lateral sclerosis)
(608627)

557

Member of the vesicle-associated
membrane protein (VAMP)-
associated protein (VAP) family.
Interacts with VAMP1 and
VAMP2 (SNAREs) and may be
involved in vesicle trafficking

VPS13B Vacuolar protein sorting 13
homolog B

607817 Cohen syndrome (216550) 403

Possible role in vesicle-mediated
sorting and intracellular protein
trafficking

Continued
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B. Alterations of the Endocytic Machinery in
Cancer

Several lines of evidence support a role for endocytosis in
cancer, and these are mostly connected to its role as a reg-
ulator of signaling events. Indeed, a wealth of studies have

shown how alteration of the endocytic machinery can in-
duce transformation in several model systems, including
mammalian cells in vitro (reviewed in Refs. 425, 538) and
developmental model systems (especially Drosophila) (re-
viewed in Refs. 139, 787). With reference to naturally oc-
curring tumors in humans, a synthetic list of the connec-

FIGURE 9. Endocytic genes in Mendelian (monogenic) diseases and in cancer. A: endocytic genes and Mendelian diseases. A list of 339
genes, including 277 genes encoding proteins involved in endocytosis and traffic and 62 proteins involved in regulation of the actin cytoskeleton,
was used to screen the OMIM and GENE databases (see TABLE 2 for details) for their mutations in Mendelian diseases. Of these genes, 289
were present in OMIM, and 72 were listed as the cause of at least one disease (the complete list is in TABLE 2), indicating a frequency of
mutation of 24.9% (red bar). This value was compared with the frequency of Mendelian disease genes among all human genes. An upper and
lower limit for this frequency is shown (blue bars), calculated as detailed in the main text. Significance of the enrichments was tested by
hypergeometric tests. The P values were obtained using the phyper function from the R statistical language (http://www.R-project.org/). B:
endocytic genes are enriched in ”old genes.“ Data relative to the phylogenetic age of all genes were downloaded from the Phylopat Database
(www.cmbi.ru.nl/phylopat/). The three age groups (old, middle, young) were defined as from Cai et al. (95). The relative distribution in the three
age groups of all human genes (blue bars) and of the endocytic genes (red bars) is shown. P values were calculated with chi-square test. C:
mutations of endocytic genes in the COSMIC database. Of the 339 genes (described in A), 160 harbored at least one mutation in at least one
type of cancer. On the top of each bar, the number of genes harboring the number of mutations indicated on the x-axis is shown. For the
”frequently mutated� genes (�5 total mutations), the gene symbol is also shown (details are in TABLE 4). D: mutations of CBL in cancer and
Mendelian diseases. In the middle of the panel, a schematic of the CBL protein is shown with its functional domains (TKB, tyrosine kinase binding
domain; LR, linker region; RF, ring-finger domain; UBA, UB-binding domain). The ruler underneath shows amino acid positions. On the top, the
position and the frequency of the mutations detected in myeloproliferative diseases are shown by solid circles, aligned with the amino acid
sequence. At the bottom, the position of the mutations detected in NSCLC and in the Noonan-like syndrome is shown by red and green arrows,
respectively. In NSCLC, the mutation at position 391 was detected in two tumors (shown as x2). In the Mendelian syndrome, four of five
mutations affect the same resides (371, 367, 382, 420) as in myeloproliferative diseases.

Table 2.—Continued

Gene
Symbol Gene Name/Protein Function

OMIM
Mutation Genetic Syndrome (OMIM number) Reference Nos.

VPS33B Vacuolar protein sorting 33
homolog B

608552 ARC syndrome (arthrogryposis,
renal dysfunction, and
cholestasis) (208085)

356

Member of the Sec-1 domain
family, homologous to the yeast
class C Vps33 protein.
Predominantly associated with
late endosomes/lysosomes,
may mediate vesicle trafficking
steps in the
endosome/lysosome pathway

WASP (*) Wiskott-Aldrich syndrome protein 300392 Wiskott-Aldrich syndrome
(301000)

159, 162, 809

The Wiskott-Aldrich syndrome
(WAS) family of proteins are
involved in transduction of
signals from receptors on the
cell surface to the actin
cytoskeleton.

Thrombocytopenia 1 (313900)

X-linked recessive congenital
neutropenia (300299)

List of endocytic, trafficking, and organelle-associated genes found mutated and causative of specific disease.
We searched for mutations in genetic syndromes of 277 “endocytic genes” (the list was manually curated and
is available upon request) encoding for: structural/accessory endocytic proteins, ARF GTPases and their
effectors; endocytic and nonendocytic RABs; proteins belonging to the ESCRT complexes; SNARE proteins;
sorting nexins and synaptotagmins; proteins associated to lysosomes or endosomes and important for their
biogenesis or function, and of 62 genes encoding actin regulator/dynamics proteins [these latter genes are
identified by (*) in the “Gene symbol” column]. Databases searched were the OMIM and the GENE database at
NCBI (http://www.ncbi.nlm.nih.gov/omim and http://www.ncbi.nlm.nih.gov/gene). Shown are the official
gene symbol and gene name, the protein function (as from the OMIM and GENE databases, supplemented with
information derived from literature), and the OMIM numbers for the mutation and the genetic syndrome.
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tions between endocytosis and cancer would include (due to
space limitations, we cannot be as comprehensive as this
topic would require, and we refer to more exhaustive re-
views, cited along with each item below, on specific issues).

1) Endocytosis is an important regulator of RTK signaling,
which is frequently subverted in cancer (see below and Refs.
538, 742).

2) Endocytosis is involved in the activation of oncogenic
receptors, such as NOTCH, by regulating the accessibility
of both receptors and ligands (237).

3) Endocytosis is a major regulator of cell fate determina-
tion, and of the maintenance of SC compartments (see sect.
VIIC). This may be highly relevant to cellular transforma-
tion, in light of increasing support for the SC theory of
cancer (128, 139, 238, 278).

4) As we extensively described in section VIIB, endocytosis
is involved in the spatial restriction of signals needed for
directed cell movement, and for the switch between motility
strategies (amoeboid vs. mesenchymal) adopted by meta-
static cells, thus implicating endocytosis in tumor progres-
sion.

5) Related to this, endocytosis and trafficking of adhesion
molecules (cadherins and integrins) is often misregulated
during cancer progression (110). This represents a crucial
mechanism that cooperates with transcriptional programs
leading to the acquisition by cultured epithelial cells of a
mesenchymal-like and SC-like motile phenotype, a transi-
tion required for metastatic dissemination and possibly for
reversion of progenitor cells into SCs during cancer devel-
opment (377, 727, 785).

6) Autophagy, a degradative pathway that involves the de-
livery of cytoplasmic cargo to the lysosome, is linked to
tumor suppression and tumor promotion (82, 448). The
relationship between autophagy and endocytosis is still
largely undefined, although some connections are starting
to emerge (144, 281), and this area might witness important
developments in the future.

7) As we discussed in section VII, endocytic proteins are
involved in the regulation of diverse cellular processes such
cell cycle, mitosis, apoptosis, and genetic reprogramming
that are known to be involved in cancer.

8) Finally, there is growing direct evidence for genetic alter-
ations, or for subversion of their regulation, of endocytic/
trafficking proteins in human tumors (425, 538).

In the remainder of this section, we focus on two aspects of
the connection between endocytosis and cancer: 1) a sys-
tematic analysis of alterations of endocytic/trafficking pro-

teins and of actin regulators in human cancers, as obtained
by extensive mining of public databases and of published
literature, and 2) a survey of the alterations of the endocytic
determinants in signaling cargoes in cancer.

1. An atlas of the alterations of ”endocytic“ proteins
in human cancers

To investigate the impact of deregulation of the endocytic
and trafficking machinery in cancer, we used the same list of
339 ”endocytic and actin regulator proteins“ employed in
TABLE 2, to screen the OMIM and GENE databases and
published literature for alterations in cancer. In TABLE 3, we
show all the identified alterations for which high-resolution
studies are available. In addition, high-throughput studies
are identifying a wealth of somatic mutations of endocytic
proteins, whose impact remains, however, to be estab-
lished. This latter series of potential alterations is reported
in TABLE 4, as obtained by searching the COSMIC (Cata-
logue of Somatic Mutations in Cancer) database, using the
list of 339 ”endocytic and actin regulator proteins.“ In this
latter case, we found that 160 genes (47%) harbor at least
one mutation in one tumor type (excluding silent muta-
tions, which are also reported in the COSMIC database).

A close analysis of the high-throughput approach gene list
of TABLE 4 revealed several interesting features, especially in
light of the fact that high-resolution studies (TABLE 3) con-
centrated mostly on alterations in the expression of endo-
cytic genes and comparatively less on their mutations. We
focused on those genes displaying more than five total mu-
tations (henceforth ”frequently mutated,“ see TABLE 4 and
FIGURE 9C). In all these cases, the number of tumors
screened is large enough (from 75 to 3,475 tumors) to allow
for some tentative conclusions.

In the case of CBL, for instance, COSMIC data confirm, on
a much wider scale, conclusions present in the literature
about mutations of this gene in neoplastic diseases of the
myeloid lineage. The vast number of cases permits the es-
tablishment of a frequency of �6% for CBL alterations in
myeloid malignancies. Interestingly, CBL was also mutated
in �3% of lung cancers (non-small-cell lung carcinoma,
NSCLC; note that the mutations of CBL in NSCLC in the
COSMIC database are those reported by Ref. 765). In my-
eloid malignancies, mutations are clustered in (or very close
to) the Ring Finger region of CBL, which is essential for
binding to E2 conjugating enzymes and, therefore, for the
E3 ligase activity of CBL (680, 685) (FIGURE 9D). Interest-
ingly, mutations in NSCLCs display a more widespread
distribution, being present also in the TKB region (which is
responsible for CBL binding to pY residues in RTKs, see
sect. VA) and in the COOH-terminal region of the protein.
Thus, although the real impact of its mutations in lung
tumorigenesis remains to be established, CBL might partic-
ipate in neoplastic transformation with different cell-spe-
cific molecular mechanisms.
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Table 3. Alterations of endocytic/trafficking proteins and of actin regulators in cancer

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

ABI1 (*) Abl-interactor 1 Loss/downregulation in gastric
and prostate cancer.
Overexpression in breast and
ovarian cancer.

Possible tumor suppressor
activity: downregulation
correlates with the
progression of gastric
cancer. Oncogenic
properties:
overexpression
associates with early
recurrence and worse
survival in breast and
ovarian cancers.

121, 145, 489, 817

ABI1 forms a complex with
EPS8/SOS1, and is involved
in signaling from RAS to
RAC. It is also a critcal
component of the
WAVEs(WASFs)-actin
nucleator promoting
complex.

ARHGEF7 Rho guanine nucleotide
exchange factor (GEF) 7

Overexpression in breast
cancer.

Necessary for v-SRC-
induced transformation
including tumor
formation in nude mice.

5

GEF for RHO-GTPases
C3ORF10

(*)
Chromosome 3 open reading

frame 10
Overexpressed in node positive

lung squamous cell
carcinoma. Genetic loss is
protective in clear cell
carcinoma.

Genetic loss or inhibition of
C3ORF10 is likely to be
protective against tumor
development due to
proliferation and motility
defects in affected cells.
Loss of the HSPC300
gene confers protection
against renal clear cell
carcinoma.

96, 109, 197

C3ORF10, also known as
HSPC300 or BRK1, is a
component of the WAVEs
(WASFs) actin nucleator
promoting complex involved
in actin polymerization in
migratory cells.

CAPG (*) Gelsolin-like capping protein Overexpressed in ovarian
cancer, oral squamous cell
carcinoma, breast cancer,
ocular melanomas,
glioblastomas, and pancreatic
ductal adenocarcinomas.

Overexpression enhances
the invasiveness and
metastasizing potential
of cancer cells.

562, 584, 771, 795

Actin capper, controls actin-
based motility in nonmuscle
cells

CAPZA2
(*)

Capping protein (actin filament)
muscle Z-line, alpha 2

Overexpressed in breast cancer
and possibly in glioblastomas.

Unclear 540, 576

Alpha subunit of the barbed-
end actin binding protein Cap
Z.

CAV1 Caveolin 1 Downregulation and sporadic
mutations in breast cancer.
Upregulation in multiple
cancers types; positively
correlates with high tumor
grade and poor clinical
outcome. Amplification in
aggressive breast
carcinomas.

Expression inversely
correlates with cell cycle
progression and
transformation.
However, ectopic
expression suppresses
oncogene-induced
apoptosis and confers
resistance to anoikis.

705
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Table 3.—Continued

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

Essential component of caveolae
CBL Cas-Br-M ecotropic retroviral

transforming sequence
Point mutations (e.g., R420Qin

RING), insertions, deletions and
fusions in AML. Mutations in
NSCLC.

Inhibits ubiquitination and
downregulation of
several receptor protein
tyrosine kinases.

1, 99, 231, 680,
685, 765

E3 UB ligase
CLTC Clathrin, heavy chain CHC-ALK fusion in IMT and large

B-cell lymphoma. CHC-TFE3
fusion in pediatric renal
carcinoma.

Constitutive activation of
ALK. Aberrant
transcription factor
activity.

85

Principal coat protein
CTTN Cortactin Amplification at gene locus

(11q13) and protein
overexpression in primary
breast carcinomas and head
and neck squamous
carcinomas.

Overexpression inhibits
ligand-induced EGFR
endocytosis; knockdown
accelerates receptor
downregulation in
HNSCC cell lines.

91

Coordinates actin polymerization
at endocytic sites; ARP2/3
activator; binds F-actin and
dynamin

CYFIP1
(*)

Cytoplasmic FMR1 interacting
protein 1

Deleted in epithelial cancers. Deletion of CYFIP1 alters
normal epithelial
morphogenesis in vitro
and cooperated with
oncogenic RAS to
produce invasive
carcinomas in vivo.

723

Interacts with RAC1 and is a
key component of the
WAVEs(WASFs)-actin
nucleator promoting complex.

DAB2 Disabled homolog 2 Downregulation in ovarian,
prostate, bladder, breast,
esophageal, and colorectal
carcinomas.

Increased expression
suppresses growth of
choriocarcinoma and
prostate cancer cells.

381

Cargo-selective clathrin adaptor;
recruits myosin VI to clathrin-
coated structures

ENAH (*) Enabled homolog Overexpressed in breast cancer. Promotes tumor invasion. 264, 664
Belongs to the ENA/VASP

family of proteins that bundle
and elongate linear actin
filaments. It potentiates EGF-
induced membrane protrusion
and increases the matrix
degradation activity of tumor
cells.

EPS8 (*) Epidermal growth factor
receptor pathway substrate 8

Overexpressed in colon,
pancreatic, ovarian cancer and
oral squamous cell carcinoma.

Promotes cell proliferation
in colon carcinoma, and
SRC-transformed cells.
Enhances
chemoresistance in
cervical cancer patients.
Promotes cell migration
and invasion of ovarian
and oral squamous cell
carcinoma.

121, 123, 469, 487,
503, 819, 870
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Table 3.—Continued

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

Participates in both EGFR
signaling through RAC and
EGFR trafficking through
RAB5. It also acts as an actin
capping protein when bound
to ABI1, and as a bundler
when it is associated with
BAIAP2.

EPS15 Epidermal growth factor
receptor pathway substrate
15

EPS15–MLL fusion in AML. EPS15 coiled-coil domain
mediates oligomerization
of MLL, a DNA-binding
histone
methyltransferase.

737

Endocytic accessory protein
EVL (*) Enah/Vasp-like Overexpressed in breast cancer. EVL may be implicated in

invasion and/or
metastasis of breast
cancer.

331

Belongs to the ENA/VASP
family of proteins.

FLNA (*) Filamin A, alpha Overexpression together with
MET in adenocarcinomas.

FLNA is one of the
important regulators of
MET signaling and HGF
induced tumor cell
migration.

880

FLNA is an actin-binding protein
that crosslinks actin filaments
and links actin filaments to
membrane glycoproteins.

FMNL2
(*)

Formin-like 2 Overexpression in metastatic cell
lines and colorectal carcinoma.

FMNL2 is involved in
epithelial-mesenchymal
transition (EMT)
maintenance in human
colorectal carcinoma
cells.

452, 882

FMNL2 is a member of
diaphanous-related formins
that control actin-dependent
processes such as cell
motility and invasion by
promoting linear filament
elongation.

FNBP1L
(*)

Formin binding protein 1-like Fusion partner of MLL in acute
myeloid leukemias (AML).

Unclear 233

It promotes CDC42-induced
actin polymerization.

GSN (*) Gelsolin Downregulated in breast,
stomach, colon, bladder and
lung cancers

May function as a tumor
suppressor by regulating
a G2 checkpoint function
of cancer cells through
phosphoinositol lipid
metabolism.

25, 179, 673

Caps the “plus” ends of actin
monomers and filaments to
prevent monomer exchange
and regulates both assembly
and disassembly of actin
filaments.

IQSEC1 IQ motif and Sec7 domain 1 Overexpression in invasive ductal
carcinomas of the breast.

Knockdown inhibits
metastasis formation by
breast cancer cells in
nude mice.

536

Continued
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Table 3.—Continued

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

ARF6 GEF; interacts with
activated EGFR

HAX1 HCLS1 associated protein X-1 Overexpression in advanced oral
carcinoma.

Knockdown inhibits
endocytosis of integrin
�v�6 and migration of
oral carcinoma cells.

635

Regulates clathrin-mediated
integrin endocytosis

HIP1
HIP1R

Huntingtin interacting protein 1
Huntingtin interacting protein
1-related

HIP1-PDGFBR fusion in CMML.
Overexpression in primary
epithelial tumors and gliomas.

Induce cytokine-
independent growth.
Transform mouse
fibroblasts to induce
colonies in soft agar and
tumors in nude mice.

636, 661

Coordinate actin remodeling
during formation of clathrin-
coated vesicles

MTSS1
(*)

Metastasis suppressor 1 Downregulated in breast and
ovarian cancer. Overexpressed
in colorectal cancer.

Overexpression of MTSS1
suppresses the invasive,
migratory, growth and
adherence properties of
a human breast cancer
cell line. High levels of
MTSS1 correlated with
an increased patient
overall survival and
disease-free survival in
breast cancer.
Overexpression of
MTSS1 in colorectal
cancer tissues was
significantly correlated to
poor differentiation,
tissue invasion, lymph
node metastasis and
high TNM stage. Loss of
expression is significantly
associated with poorly
differentiated tumors,
large tumor size, deep
invasion level, nodal
metastases and
advanced disease stage
in gastric cancer.

441, 467, 583, 818

Possesses an I-BAR domain
that deforms the PM and
binds actin through its WH2
domain. Overexpression of
Mtss1 causes formation of
abnormal actin structures.

NUMB Numb homolog (Drosophila) NUMB expression is lost in about
50% of human mammary
carcinomas and nonsmall cell
lung carcinomas.

NOTCH antagonist. Tumor
suppressor activity
attributed to stabilization
of TP53.

131, 593, 838

Regulates internalization and
recycling of several PM-
resident proteins

Continued
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Table 3.—Continued

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

PARD3 Par-3 partitioning defective 3
homolog (C. elegans)

Downregulation in HCC. Associations with tumor
suppressors (VHL and
PTEN) and oncogenes
(e.g., ERBB2) impinge
on regulation of cell
polarity.

210

PARD3 proteins, which were
first identified in C. elegans,
are essential for asymmetric
cell division and polarized
growth. PARD3 controls
endocytosis and recycling in
clathrin-dependent and
independent pathways

PRKCDBP
(CAVIN3)

Protein kinase C, delta binding
protein

Epigenetic inactivation. Epigenetic inactivation of
PRKCDBP, due to
aberrant promoter
hypermethylation, is a
common event and
might be implicated in
human ovarian
tumorigenesis (possible
tumor suppressor).

776

Cavin-3, a component of
caveolae

RAB25 RAB25, member RAS
oncogene family

Amplification of genomic locus
(1q22) in advanced ovarian and
breast cancers.

Overexpression promotes
increased anchorage-
independent growth and
tumor cell invasion.

124

Small GTPase of the RAB
subfamily. Regulates receptor
recycling. Promotes invasion
by delivery of integrin �5�1 to
the leading edge

SCIN (*) Scinderin Lack of expression in
megakaryoblastic leukemia
cells, but is present in normal
megakaryocytes and platelets.

Cell proliferation and cell
ability to form tumors in
nude mice are inhibited
by the expression of
scinderin.

888

Scinderin is a Ca2�-dependent
actin-severing and -capping
protein.

SH3GL1 SH3-domain GRB2-like 1 (EEN,
endophilin II)

EEN-MLL fusion in AML. EEN coiled coil-dependent
dimerization and
oncogenic activation of
MLL.

464

Endocytic accessory protein,
induces membrane curvature
during vesicle formation

SNAP91 Synaptosomal-associated
protein, 91 kDa homolog

SNAP91-AF10 fusion in ALL and
AML.

Fusion comprising clathrin-
binding domain of
SNAP91and putative
transcription factor
AF10.

21

Clathrin-binding adaptor;
involved in assembly of
clathrin coats

Continued
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Table 3.—Continued

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

SPRY1
SPRY2

Sprouty homolog 1, antagonist
of FGF signaling and Sprouty
homolog 2

Deregulation of SPRY1 and
SPRY2 in breast and prostate
cancers.

As a tumor suppressor it
acts as an antagonist of
RAS-ERK pathway:
SPRY1 and SPRY2
overexpression in
osteosarcoma and
prostate cancer cells,
respectively, inhibits cell
proliferation and
invasion. As a putative
oncogene it functions as
an inhibitor of EGFR
downregulation by
targeting both the CBL
and CIN85 pathways.

283, 473

SPRY1 and SPRY2 inhibit the
transcriptional events
mediated by growth factor
signaling and the induction of
FOS. They compete with RTKs
for CBL binding and prevent
receptor degradation

TNK2
(ACK1)

Tyrosine kinase, nonreceptor, 2 Gene amplification in advanced-
stage primary tumors and
metastases derived from
prostate and breast.

Enhances tumorigenesis in
nude mice. Promotes
degradation of tumor
suppressor protein
WWOX.

794

Binds clathrin and activated
EGFR; promotes receptor
degradation

TRIP10
(*)

Thyroid hormone receptor
interactor 10

TRIP10 is hypermethylated in
brain tumor and breast cancer,
but hypomethylated in liver
cancer.

TRIP10 regulates cancer
cell growth and death in
a cancer type-specific
manner. Differential
DNA methylation of
TRIP10 can either
promote cell survival or
cell death in a cell type-
dependent manner.

328

It is a F-BAR-containing protein
involved in CDC42, Dynamin
and WASP-dependent
endocytic processes.

VIL1 (*) Villin 1 Overexpressed and amplified in
cervical adenocarcinomas.

Cervical carcinomas show
variability in the
expression and genomic
copy number of Villin1
(VIL1). Kaplan-Meier
survival curves revealed
worse disease-free
survival in VIL1-positive
tumors.

549

Encodes a member of a family
of calcium-regulated actin-
binding proteins that can cap,
sever, or bundle actin
filaments.

VPS37A Vacuolar protein sorting 37
homolog A

Downregulation in hepatocellular
carcinoma.

Knockdown strongly
stabilizes EGFR.

863

Component of ESCRT-I complex;
promotes down-regulation of
ubiquitinated receptors

Continued
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Another eight endocytic and actin regulator genes were fre-
quently mutated in the COSMIC database. Of these, only
CYFIP1 was previously implicated in cancer through high-
resolution studies (723). For the other seven (VPS13B, CUBN,
LYST, TSC2, FLNB, RIMS1, FLNC), the involvement in can-
cer was previously unsuspected (see TABLE 3). We caution that
in several tumors, the number of analyzed cases is too low to
draw meaningful conclusions. In addition, the high frequency
of mutations in ovarian cancers is suspect because too many
genes were mutated at high frequency. Despite these limita-
tions, in the case of breast cancer, the number of analyzed
cases (30–50) and the frequency of mutation of the ”fre-
quently mutated genes“ (in some cases as high as 10–12%)
suggest a significant impact of subversion of endocytosis in this
type of neoplasm (TABLE 4).

There is one additional reason to suspect that mutations of
the ”frequently mutated genes“ have a causal role in cancer.
We noticed a singular overlap between endocytic genes that
are mutated in Mendelian diseases (as from TABLE 2) and
those that are frequently mutated in cancer. TABLE 4 shows
that, already by visual inspection, a clustering of Mendelian
genes is evident towards the top of the Table, where the
frequently mutated genes are. In particular, eight of nine
genes frequently mutated in cancer (�5 total mutations) are

also monogenic disease genes. The calculated P for this
event is highly significant (P: 0.0005); in addition, this is an
exclusive property of the ”frequently mutated genes,“ since
the overlap between the entire two sets of genes (all the
genes of TABLE 2 and TABLE 4) is not significant (P: 0.5).
This argues for the fact that a subset of endocytic genes are
highly sensitive to mutations (meaning that they are suffi-
ciently important for mutations to cause disease pheno-
types), possibly for the reasons already discussed at the end
of section VIIA. Under this scenario, mutated alleles of these
genes would give rise to Mendelian diseases or to cancer
when mutated in the germ line or in somatic cells, respec-
tively.

This hypothesis is supported by the analysis of the CBL
mutations in the Noonan syndrome-like disorder (the
monogenic disease in which CBL is implicated) and in can-
cer. The mutations in the genetic syndrome (501, 605) clus-
ter in the Ring Finger region of CBL, and in several cases
they affect exactly the same residue as in myeloid diseases
(FIGURE 9D). Indeed, in the case of CBL, the tight relation-
ship between cancer and monogenic diseases is established
at the human genetics level by the fact that individuals with
juvenile myelomonocytic leukemia harboring CBL muta-
tions also show phenotypic traits of a Noonan syndrome-

Table 3.—Continued

Gene
Symbol Gene Name/Protein Function Type of Alteration Oncogenic Properties Reference Nos.

WASF2
(*)

WAS protein family, member 2 Overexpression of WAVE2
(WASF2) was seen in node-
positive as well as in
moderately and poorly
differentiated breast cancer,
and in colon cancer with
respect to normal colonic
epithelial cells.

High levels of WAVE2
expression were
associated with death
due to disease in breast
cancer patients.
Colocalization of Arp2
and WAVE2 has been
found as an independent
risk factor for liver
metastasis of colorectal
carcinoma.

216, 353

Forms a WAVEs (WASFs) actin
nucleator promoting complex
that links receptor kinases to
actin dynamics.

WASF3
(*)

WAS protein family, member 3 Overexpression in prostate
cancer.

WAVE3 is pivotal in
controlling the
invasiveness of prostate
cancer cells.

217

This gene encodes a member of
the Wiskott-Aldrich syndrome
protein family and has similar
function to its homologues
WASF1 and 2

We searched for mutations or deregulation in cancer in a list of 277 “endocytic genes” and of 62 genes
encoding actin regulator/dynamics proteins [these latter genes are identified by (*) in the “Gene symbol”
column] (same as in Table 2). Databases searched were the OMIM and the GENE database at NCBI (http://
www.ncbi.nlm.nih.gov/omim and http://www.ncbi.nlm.nih.gov/gene), supplemented with ad hoc literature
searches. Shown are the official gene symbol and gene name, the protein function (as from the OMIM and
GENE databases, supplemented with information derived from literature), the type of alteration detected in
cancer and a description of the oncogenic properties of the protein (as obtained from the literature).
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Table 4. Mutations in genes encoding endocytic/trafficking proteins and actin regulators in cancer in the COSMIC database

GENE SYMBOL BR CNS HAE KID COL LIV LUN OVA PAN MEL URI TOT MEND.

CBL 2 (447) 133 (2322) 9 (318) 144 X
VPS13B 1 (48) 2 (23) 3 (11) 6 (7) 1 (2) 4 (6) 17 X
CUBN 4 (48) 1 (22) 1 (1) 1 (37) 6 (9) 2 (2) 15 X
LYST 4 (30) 2 (22) 5 (6) 11 X
TSC2 4 (22) 3 (338) 2 (22) 9 X
CYFIP1 (*) 1 (1) 4 (4) 3 (2) 8
FLNB (*) 6 (49) 2 (3) 8 X
RIMS1 1 (30) 5 (7) 1 (2) 7 X
FLNC (*) 2 (33) 2 (32) 2 (2) 6 X
ALS2 1 (30) 4 (6) 5 X
FMN2 (*) 1 (32) 2 (4) 2 (3) 5
KIF16B 1 (48) 1 (101) 1 (38) 1 (11) 1 (6) 5
OTOF 2 (48) 3 (3) 5 X
AP1M1 1 (48) 3 (3) 4
BIN1 2 (447) 1 (2) 1 (6) 4 X
DIAPH2 (*) 1 (11) 3 (3) 4
FHOD3 (*) 2 (30) 1 (32) 1 (1) 4
HIP1 1 (447) 1 (1) 2 (2) 4
HPS3 1 (37) 3 (5) 4 X
MYO15A 1 (22) 1 (2) 1 (1) 1 (1) 4 X
SEC23A 4 (4) 4 X
SNX19 2 (11) 2 (2) 4
SNX25 2 (30) 2 (2) 4
SVIL (*) 4 (5) 4
SYT6 1 (22) 2 (3) 1 (1) 4
AMPH 1 (1) 2 (3) 3
AP3B2 2 (3) 1 (1) 3
DAAM2 (*) 2 (2) 1 (1) 3
EVL (*) 2 (37) 1 (1) 3
FLNA (*) 3 (30) 3 X
GGA1 2 (48) 1 (1) 3
GSN (*) 2 (48) 1 (1) 3 X
ITSN2 2 (412) 1 (1) 3
MYO5A 1 (22) 2 (3) 3 X
MYO7A 1 (30) 2 (3) 3 X
NDRG1 3 (4) 3 X
SNX13 2 (447) 1 (101) 3
SNX4 2 (13) 1 (1) 3
SYT3 1 (48) 2 (2) 3
DIAPH3 (*) 2 (2) 2
EPS8 (*) 2 (2) 2
EPS8L3 (*) 2 (2) 2
FHOD1 (*) 2 (48) 2
FMNL2 (*) 2 (446) 2
FMNL3 (*) 2 (1) 2
NCKAP1 (*) 2 (2) 2
SCIN (*) 2 (2) 2
WASF2 (*) 1 (1) 1 (2) 2
AP1G1 2 (2) 2
AP1M2 2 (2) 2
AP2A1 2 (2) 2
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Table 4.—Continued

GENE SYMBOL BR CNS HAE KID COL LIV LUN OVA PAN MEL URI TOT MEND.

CHMP4A 2 (2) 2
CHMP4C 2 (2) 2
GGA3 1 (48) 1 (1) 2
HPS5 1 (1) 1 (1) 2 X
LAMP1 2 (446) 2
LDLR 2 (2) 2 X
MYO1A 1 (2) 1 (2) 2 X
RAB36 1 (23) 1 (1) 2
RAB3C 1 (23) 1 (1) 2
RAB5C 1 (38) 1 (6) 2
SH3GL3 1 (22) 1 (1) 2
SNX21 1 (48) 1 (1) 2
SNX27 2 (2) 2
SNX7 2 (2) 2
STAM 1 (37) 1 (1) 2
STAMBP 1 (1) 1 (1) 2
STX12 1 (48) 1 (22) 2
STX3 2 (1) 2
STX5 1 (48) 1 (1) 2
SYNJ1 2 (1) 2
SYT14 1 (1) 1 (1) 2 X
SYT7 2 2
SYTL4 2 2
ABI1 (*) 1 (447) 1
ACTG1 (*) 1 (1) 1 X
AP1B1 1 (1) 1
AP1G2 1 (1) 1
AP2B1 1 (1) 1
ARF5 1 (1) 1
AVIL (*) 1 (446) 1
BAIAP2L (*)1 1 (1) 1
BAIAP2L2 (*) 1 (1) 1
CAPZA3 (*) 1 (1) 1
CHM 1 (1) 1 X
CHMP4B 1 (1) 1 X
CHMP6 1 (1) 1
CYFIP2 (*) 1 (1) 1
DAAM1 (*) 1 (1) 1
DNM1 1 (1) 1
DNM2 1 (1) 1 X
EEA1 1 (1) 1
EPS8L2 (*) 1 (1) 1
FMN1 (*) 1 (1) 1
ITSN1 1 (1) 1
LAMP2 1 (1) 1 X
MCOLN1 1 (48) 1 X
MLPH 1 (1) 1 X
MTSS1 (*) 1 (1) 1
MURC 1 (1) 1
MYO6 1 (1) 1 X
NPC1 1 (1) 1 X
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Table 4.—Continued

GENE SYMBOL BR CNS HAE KID COL LIV LUN OVA PAN MEL URI TOT MEND.

PDCD6IP 1 (6) 1
PICALM 1 (1) 1
PSEN1 1 (102) 1 X
PTRF 1 (48) 1 X
RAB10 1 (1) 1
RAB15 1 (1) 1
RAB28 1 (1) 1
RAB2B 1 (1) 1
RAB31 1 (6) 1
RAB37 1 (1) 1
RAB38 1 (38) 1
RAB3B 1 (1) 1
RAB3D 1 (1) 1
RAB41 1 (1) 1
RAB43 1 (200) 1
RAB4A 1 (1) 1
RAB4B 1 (6) 1
RAB6C 1 (200) 1
RAB7L1 1 (1) 1
RAB8A 1 (6) 1
RAB8B 1 (101) 1
RAB9A 1 (1) 1
RIN1 1 (188) 1
RIN2 1 (1) 1 X
SDPR 1 (1) 1
SH3GL1 1 (1) 1
SNAP91 1 (1) 1
SNX16 1 (1) 1
SNX2 1 (101) 1
SNX20 1 (1) 1
SNX29 1 (1) 1
SNX5 1 (38) 1
SNX8 1 (38) 1
STAM2 1 (1) 1
STX11 1 (1) 1 X
STX16 1 (1) 1
STX17 1 (37) 1
STX6 1 (1) 1
STXBP2 1 (22) 1 X
SYN1 1 (1) 1 X
SYT1 1 (1) 1
SYT10 1 (1) 1
SYT11 1 (1) 1
SYT12 1 (1) 1
SYT13 1 (1) 1
SYT16 1 (1) 1
SYT17 1 (1) 1
SYT2 1 (1) 1
SYT9 1 (37) 1
SYTL1 1 (1) 1
SYTL2 1 (32) 1
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like disorder (605). In the case of the other ”frequently
mutated in cancer“ endocytic genes, the connection be-
tween mutations causing cancer and Mendelian diseases is
more elusive. This can be due to the low number of cancer
mutations presently available and to the fact that, in many
cases, the genetics of the paired conditions (cancer:Mende-
lian disease for each gene) might be different (dominant or
recessive), suggesting different molecular pathogenesis.
Whatever the case, the highly significant overlap between
the two sets and the CBL paradigm suggest that the com-
parative analysis of alterations in cancer and in genetic dis-
ease might help to identify driver mutations in cancer, a
possibility that we suspect might extend beyond the subset
of endocytic genes herein analyzed.

2. Alterations of the endocytic determinants in
signaling cargoes in cancer

Not only endocytic proteins, but also PM cargoes are fre-
quently mutated in human cancers, in specific determinants
that alter their vesicular traffic. In this instance, alterations
usually affect the ability of the receptor to be properly ubi-
quitinated and downregulated, therefore causing sustained
signaling. This is the case for several RTKs, like EGFR
(reviewed in Ref. 609), MET (reviewed in Ref. 418), and
KIT (876). The most frequent genetic alterations, in these
occurrences, consist of deletions that affect the region en-
coding portions of the intracellular domains of RTKs, usu-
ally encompassing the binding region for CBL, the major E3
ligase involved in RTK ubiquitination.

In addition to this, other mechanisms are exploited by can-
cer cells to evade endocytosis-mediated desensitization. For
instance, somatic mutations in the kinase domain of the
EGFR have been reported in non-small-cell lung cancers,

and they have been shown in vitro to cause reduced receptor
phosphorylation at Y1045, the major CBL binding site and,
consequently, defective receptor downregulation (240,
719). Similarly, EGFRvIII, an oncogenic deletion mutant of
the EGFR, frequently observed in glioblastoma, shows hy-
pophosphorylation of Y1045 and reduced degradation
(267, 288; see also Ref. 538 for more detailed explana-
tions).

An endocytic-dependent mechanism has been proposed
to contribute to the transforming effects of ERBB-2 over-
expression in breast cancer. ERBB-2 belongs to the EGFR
family of RTKs; at variance with EGFR, however,
ERBB-2 is internalization impaired (52, 741). Het-
erodimerization of ERBB-2 with ligand-occupied EGFRs
seems to influence the endocytic trafficking of both
ERBB-2 and EGFR. Indeed, it has been shown that
EGFR-ERBB-2 heterodimers display delayed endocyto-
sis, are not efficiently sorted to lysosomes, and are pref-
erentially recycled back to the cell surface, causing aber-
rant signaling (28, 307, 445, 855). One possibility is that
EGFR and ERBB-2 are not fully ubiquitinated in the
heterodimers. Indeed, while activated ERBB-2 can recruit
CBL, this recruitment is less efficient compared with
EGFR (449). An alternative possibility is that het-
erodimers display reduced affinity for EGF and dissociate
from the ligand in endosomes, due to the release of the
ligand in the acidic environment of endosomes, being
recycled back to the surface (445). However, computa-
tional modeling of the trafficking of EGFR-ERBB-2 het-
erodimers predicted that elevated dissociation of ligand
in endosomes could not explain the observed trafficking
patterns of the heterodimers (308). Rather, the reduced
degradation of EGFR might be explained by a mecha-
nism through which ERBB-2 directly competes with

Table 4.—Continued

GENE SYMBOL BR CNS HAE KID COL LIV LUN OVA PAN MEL URI TOT MEND.

TRIP10 (*) 1 (1) 1
USP8 1 (11) 1
VIL1 (*) 1 (1) 1
VPS24 1 (22) 1
VPS4B 1 (1) 1
WAS (*) 1 (1) 1
WASF3 (*) 1 (1) 1
Total 46 32 133 8 17 2 23 184 26 19 1 491

We searched for mutations in cancer (in the COSMIC database, Version 53, www.sanger.ac.uk/perl/
genetics/CGP/cosmic) in a list of 277 “endocytic genes” and of 62 genes encoding actin regulator/dynamics
proteins [these latter genes are identified by (*)] (same as in Table 2). Genes are ranked by the total number
of mutations found. Shown are the official gene symbol and frequency of mutations (total number of mutations
and number of analyzed cases in parentheses) within each tumor type. Silent mutations were not computed.
Type of tumor: BR, breast; CNS, central nervous system; HAE, tumors of hematological and lymphoid tissues;
KID, kidney; COL, colon-rectum; LIV, liver; OVA, ovary; PAN, pancreas; MEL, melanomas; URI, urinary tract.
In column “MEND,” we report (by an X) whether the listed genes are also mutated in Mendelian diseases (as
from Table 2).
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EGFR for a stoichiometrically limited quantity of endo-
somal retention components, thereby reducing endo-
somal retention and degradation of EGFR (308). What-
ever the case, it appears that altered trafficking of EGFR
might be one mechanism through which ERBB-2 exerts
its oncogenic potential.

In addition to RTKs, many GPCRs are overexpressed in
human cancers and contribute to tumor progression (re-
viewed in Ref. 178). Recent work has revealed that dereg-
ulated trafficking of CXCR4 and PAR1 through the endo-
somal-lysosomal station leads to increased surface expres-
sion of these cargoes in breast cancer cells, contributing to
cancer progression (72, 199, 200, 453). Interplay with
ERBB-2 seems to have a role in breast cancers that display
elevated CXCR4 surface levels. Indeed, ERBB-2 overex-
pression seems to enhance CXCR4 levels both by increasing
protein synthesis and by impairing CXCR4 ubiquitination
and lysosomal degradation mediated by AIP4, the E3 ligase
involved in this process (453). It has been proposed that in
this case the mechanism may involve CISK, a Ser/Thr kinase
downstream of PI3K signaling, which phosphorylates and
inactivates AIP4, thereby contributing to the increased
CXCR4 levels (734).

In conclusion, while we have had to necessarily limit our-
selves to the description of a few paradigmatic cases, it is
evident that subversion of endocytosis might be involved in
cancer in multiple ways. Given this, a deeper analysis of the
endocytic process is predicted not only to advance our un-
derstanding of cell regulation and how it connects to the
pathogenetic mechanisms of cancer, but should also help to
identify novel targets for molecular therapies and clinically
relevant biomarkers for prognostic, diagnostic, and thera-
peutic purposes.

IX. EVOLUTION OF ENDOCYTOSIS

In this section, we review knowledge and hypotheses re-
garding the origin of endocytosis. We will do so, initially,
with the underlying assumption that endocytosis evolved
as a tool to increase fitness through the more efficient
uptake of nutrients from the extracellular milieu (see
sect. I and Ref. 151). An evolutionary perspective is, in
our opinion, indispensable to understand how and why
endocytosis has become what we know today. In the next
section (sect. X), we will then try to put forward models
that explain speculatively how a relatively simple device
might have evolved to become a cornerstone of the eu-
karyotic cellular plan.

Even the simple ”will work for food“ outlook on endo-
cytosis requires rather sophisticated tools, such as a func-
tional system of endomembranes, the presence of acces-
sory proteins that give plasticity to the membrane system
(i.e., coat and transport/trafficking proteins), and an ac-

tive cytoskeleton. Indeed, it is widely assumed that an
internal and dynamic endomembrane system comprising
a nuclear envelope, ER, Golgi system, endosomes, phago-
somes, lysosomes, autophagosomes, peroxisomes, and
mitochondria (chloroplast) must have been present in the
last eukaryote common ancestor (LECA). In addition,
until recently, the cytoskeleton, endomembranes, and en-
docytic accessory proteins were thought to be exclusive
to eukaryotes. The picture has started to change, how-
ever, in the last few years with the realization that a
number of elements of the system were already in place
much earlier in evolution, in prokaryotic organisms. This
bears important consequences on our understanding of
how endocytosis came into being, and, as we will see, of
how its ”simple“ beginnings already had embedded in
them the prerequisites for it subsequent ”explosion“ in
eukaryotic homeostasis.

A. Actin in Prokaryotes

Actin filaments serve as a scaffold for motor proteins, e.g.,
in the distribution of mobile cellular elements such as trans-
port vesicles and organelles. On the other hand, actin fila-
ment polymerization is the driving force in cellular shape
changes such as the formation of pseudopods and amoe-
boid movement of cells. Actin homologs have been identi-
fied in prokaryotes (see Refs. 101 and 701 for a complete
review). Both the actin homolog (Ta0583) of the archaeon
Thermoplasma acidophilum and the eubacterial actin ho-
molog (MREB) in Bacillus subtilis have been shown to pos-
sess biochemical and structural properties equivalent to
those of eukaryotic actin (198, 293, 399, 657). The major-
ity of the proteins involved in actin remodeling have no
prokaryotic homologs or display only distant connections
(such as a common structural fold) at the level of individual
domains. In particular, no prokaryotic homologs were de-
tected for the accessory subunits of the ARP2/3 complex
that is highly conserved in all eukaryotes and serves as a
nucleator of monomeric actin units to initiate polymeriza-
tion (874). However, the presence of common structural
features in ARP2/3 proteins and in the archaeal actins sug-
gests that the common ancestors of the archaeal and eu-
karyotic actins were capable of forming branched filaments.
In addition, the family of RHO GTPases, that are ubiqui-
tous regulators of actin dynamics in eukaryotes, appears to
be of bacterial origin (874).

Bacterial actin-like proteins have been shown to perform
essential functions in several aspects of cellular physiol-
ogy. They control cell growth, cell shape, chromosome
segregation, and polar localization of proteins and local-
ize as helical filaments underneath the cell membrane.
MREB forms dynamic helical structures and is required
for the maintenance of a rod-shaped morphology. It has
been shown to form spirals that traverse along the longi-
tudinal axis of Bacillus subtilis and Escherichia coli cells.
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It has also been shown that the bacterial cytoskeleton and
cell shape-determining proteins, such as MREB, function
in concert to orchestrate the localization of cell wall syn-
thetic complexes (171). In addition, MREB is involved in
chromosome segregation. Eukaryotic cells use the tubu-
lin-based cytoskeleton to segregate their chromosomes
during mitosis. In bacteria, this task is accomplished by
the actin homolog MREB, which specifically binds to and
segregates the replication origin of the bacterial chromo-
some (414). Bacillus subtilis MREB and MBL (a second
actin ortholog) have been shown to perform dynamic
motor-like movements within cells (154). A proposed
mechanism is that polymerization of MREB from the
middle of the cells toward the cell poles pushes replicated
regions on the chromosomes toward the poles (746).
Thus a primordial actin-like cytoskeleton is present al-
ready in prokaryotes, ready to be harnessed (in evolu-
tion) by the future endomembrane system.

B. Endomembranes and Coat Proteins in
Prokaryotes

While the assumption that LECA possessed a well-devel-
oped endomembrane system is widely accepted, there is no
established consensus regarding its origin and evolution.
There are several models for the origin of endomembranes,
which have been put forward mainly with the intent of
explaining the origin of the eukaryotic nucleus and, the
nuclear envelope itself (360, 500). Three major models are
considered: 1) a symbiontic scenario, which posits that the
nucleus evolved from a symbiont (an archaeabacterium or
enveloped virus); 2) a de novo scenario, postulating that
membrane genesis was gained by spontaneous lipid vesicle
assembly; and 3) an autogenous scenario, in which endo-
membranes evolved via the inward budding of a prokary-
otic ancestor’s PM.

A series of findings obtained with Planctomycetes (461)
argues that an endomembrane system and compartmental-
ized cell organization, in an ancestral organism, could have
developed without the need for contributions from cells of
other domains of life. Indeed, a simple but functional sys-
tem of endomembranes is present already in bacteria, in the
phyla of Planctomycetes (reviewed in Ref. 234). Notably,
the planctomycete Gemmata obscuriglobus, one of the few
compartmentalized bacteria, seem to possess three distinct
compartments; a “nucleoid” containing the DNA, a “ribo-
plasm” a ribosome-containing cytoplasm, and a ribosome-
free cytoplast, the “paryphoplasm” (461). In addition, in
several members of this phylum, cytosolic membrane coat-
like (MC) proteins were found, and for some of them a clear
membrane-bound localization was observed (682). Finally,
Gemmata obscuriglobus has the ability to uptake proteins
present in the external environment in an energy-dependent
process analogous to eukaryotic endocytosis, and the inter-
nalized proteins are associated with the membranes of in-

ternal vesicle (477). Thus an internal membrane system,
responsible for endocytosis, has evolved within a simple
prokaryotic cell and without the involvement of a symbi-
ont.

The existence of Planctomycetes MCs can be viewed in light
of another interesting concept that emerged from eukary-
otic studies, that of the “protocoatomer.” In eukaryotes,
the biogenesis of transport containers, which shuttle cargo
between endomembranes and/or to and from the PM, is
mediated primarily by coat protein complexes. These in-
clude the coat protein complex II (COPII) that mediates,
ER-to-Golgi vesicular trafficking, coat protein complex I
(COPI) that mediates intra-Golgi and Golgi-to-ER traffick-
ing, and the clathrin-based protein complexes that are in-
volved in endocytosis and trafficking between the Golgi,
lysosomes, and endosomes. The core coat protein machin-
eries are not only highly conserved throughout eukaryotic
evolution, but also all evolutionarily related. An evolution-
ary link between the components of the COPI and clathrin
adaptor complexes (AP-1, AP-2, and AP-3) has been dem-
onstrated (688), as also supported by structural and bio-
chemical comparisons of COPI and AP-2 or AP-1/AP-3 sub-
units (320). These findings support the idea that all eukary-
otic coat proteins share some common ancestor, which is
operationally defined as a “protocoatomer.”

The question now is as to relationships between the Planc-
tomycetes MCs and the hypothetical eukaryotic proto-
coatomer, and more in general between endocytosis in
Planctomycetes and in eukaryotes. No significant sequence
similarity can be detected between the bacterial and eukary-
otic coat proteins. Although this seems to indicate that the
two sets of proteins are unrelated, it is noteworthy that their
core architecture is conserved and that sequence similarity
is often lost during long periods of evolution (e.g., FtsZ and
tubulin or MreB and actin). Indeed, low or no sequence
similarity can be detected between the eukaryotic coat pro-
teins themselves, despite a common origin and significant
structural similarity. This leaves us with a number of pos-
sibilities. On the one hand, endocytosis, as found in Planc-
tomycetes, may be an example of a parallel evolutionary
development of an analog of the eukaryotic process. In
other words, it is possible that both eukaryotic and bacte-
rial membrane-coat proteins appeared separately, i.e., by
convergent evolution. The alternative is that the two pro-
cesses are the result of divergent evolution, in which the
process originated in prokaryotes and then was either selec-
tively lost in some branches of bacteria and in Archaea, or
laterally transferred to Eukarya (see Ref. 222 for a more
detailed discussion). The possibility also exists that bacteria
of the superphylum Planctinomycetes-Verrucomicrobia-
Chlamydiae (PVC) represent an intermediate evolutionary
step between bacteria and a common eukaryotic and ar-
chaeal ancestor (161). Regardless, there is one fundamental
lesson from the Planctomycetes studies, i.e., that generating
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an endomembrane system might not be that difficult after
all. In the PVC superphylum, MC-like proteins are found
only in those bacteria that possess a compartmentalized cell
plan, i.e., with intracytoplasmic membranes (682). This
might mean that the simple presence of a membrane-bend-
ing protein is enough to lead to the generation of an endo-
membrane system.

C. From Prokaryotes to Eukaryotes

A system of endomembranes, an actin-like cytoskeleton and
a repertoire of coat proteins mostly likely allowed, during
evolution, the development of an internal trafficking sys-
tem. As we have seen, all of these elements are already
present at least in some prokaryotic cells. One could postu-
late that the loss of the cell wall in a prokaryote created the
initial condition of membrane plasticity necessary for endo-
cytosis. The development of protocoatomers allowed for
membrane bending, and the harnessing of a primordial ac-
tin cytoskeleton provided the mechanical force to tubulate
or vesiculate the PM. Ribosomes that were initially attached
to the PM then became internalized but stayed attached to a
membrane, giving rise to a primitive endomembrane sys-
tem, the rough ER, and finally to the nuclear envelope (152,
500). The acquisition of mitochondria then had a decisive
impact on eukaryotic cell architecture. While such an out-
look is obviously far from being proven (see Refs. 361 and
874, particularly in the Reviewers’ Comments sections), it
provides a plausible scenario under which an endocytic sys-
tem might not only have evolved before eukaryote separa-
tion as a distinct lineage, but can also be considered a pre-
requisite for the formation of the endomembrane system, of
the nuclear envelope, and mitochondrial acquisition, which
are the fundamental features of all eukaryotes.

One important finding in favor of this model is the fact that
membrane coat proteins and nuclear pore complex proteins
are evolutionarily related at the structural level (160). Nu-
clear pores and vesicle-coating complexes may share these
folds because both complex types originated from a com-
mon ancestor. In this scenario, a single protocoatomer
would have been the progenitor for numerous vesicle coat-
ing complexes, as well as nuclear pore proteins. This model
links vesicle coats and the nuclear pore protein complexes
through a common ancestor, suggesting an evolutionary
continuity of the corresponding membrane domains, i.e.,
the PM, the ER, the Golgi, and the nuclear envelope, and
strongly argues that a secretory/endocytic compartment
and its actively budding coated vesicles would predate the
origin of the nucleus, and thus of eukaryotes (279, 360).

The sum of all data reviewed above, therefore, strongly
support the autogenous scenario (see sect. IXB) for the or-
igin of an endomembrane system and of the nuclear enve-
lope via the inward budding of a prokaryotic ancestor’s
PM. While the driving evolutionary force might very well

have been “competition for food,” there is one major im-
plication of this outlook (regardless of the driving force),
i.e., that the starting point of any further molecular evolu-
tion in the endomembrane system must have been proteins
originally associated with the PM, as supported by the re-
lationship between coats and nuclear pores, an issue that
will be further developed in section X.

X. OUTLOOK: BEYOND THE PARTNERSHIP

It seems that endocytosis pops up at every stone that we
turn in the cell. In this section we will speculate on why this
might be so. Our leitmotiv is that endocytosis initially
evolved as a simple stand-alone process in the competition
for nutrients. However, the peculiar design of the system,
even in its very primordial version, implicated a number of
latent properties that created the enabling conditions for the
explosion of a number of other features (FIGURE 10). These
latent properties do not appear strictly related to the initial
selective advantage provided by endocytosis and are thus
true “emerging properties” of the system. They led to the
development of a completely novel cellular plan, based on a
novel system of cell logistics: the logistics provided by en-
docytosis and the eukaryotic cell plan.

While, for ease of understanding we will frequently use
colloquial expressions such as “the cell learns,” or “mole-
cules learn,” or the “purpose” of something, it goes without
saying that these are not proper evolutionary terms. Our
aim, though, is to present an intuitively understandable pic-
ture of how such a novel cellular plan may have come to be.

A. A Logic for Logistics?

At the beginning of this review we provided a rather un-
usual definition for endocytosis: “Endocytosis is the logis-
tics of the cell.” It is now time to explain, in light of all the
facts that we reviewed, what we mean by that. From the
evolutionary point of view, it does not take a large stretch of
the imagination to see how the cell might have very rapidly
learned how to exploit for other purposes, a system that
originally developed under the simple pressure of competi-
tion for nutrients.

The appearance of receptor-mediated endocytosis is a first
case in point. This is a process present in all eukaryotic cells
and, therefore, must have been present in the LECA already.
From the evolutionary viewpoint, it must have provided a
considerable advantage, since it allows a switch in feeding
habits from “sampling the milieu through bulk endocyto-
sis” to “capturing and concentrating the nutrients.” Thus it
might have evolved under the same selective pressure that
allowed the development of endocytosis. And yet, the pro-
cess came with an unexpected property: it modulated the
composition of the PM, allowing for a higher level of mo-
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lecular plasticity in the relationships between the intracel-
lular and extracellular compartments.

Recycling is another example. One could easily envision a
scenario under which recycling evolved as a simple tool to
replenish the PM of components that were depleted during
the internalization process. Similarly, when the cell learned
how to employ receptor-mediated endocytosis, the ability

to recycle receptors to the PM must have constituted a
strong selective advantage in the competition for food.
However, once the system was in place, it should not have
taken much tinkering to develop a system of homing devices
to obtain selective recycling to specific areas of the PM, as
opposed to the bulk PM. The result of such a process is the
ability to concentrate PM-resident molecules, such as recep-
tors, in restricted areas of the PM, a prerequisite for the

FIGURE 10. The endocytic matrix. A conceptual drawing of the endocytic matrix is displayed. Starting from
the primordial functions of endocytosis (green), connected with competition for food, a series of additional
functions (yellow) became associated with the endomembrane system during evolution. These functions
(yellow) were the consequence of 1) emerging properties of the system, such as size of endosomes, physical
separation of signaling compartments (PM and endosomes), and origin of the nuclear envelope from endo-
membranes (see sect. IXB and XA); 2) early convergence of endocytosis with other cellular functions and
subsequent coevolution, as in the case of actin cytoskeleton and of the ubiquitination system (see sects. IXA
and XA); and 3) late convergence of endocytosis with other systems, such as pY-based signaling and the PAR
complex (see sect. X, A and B). The consequence of these events is the pervasive presence of endocytosis and
trafficking in virtually every cellular aspect of cell regulation (blue), and in the control of several cellular
phenotypes (purple). The molecular (blue) and biological (purple) characteristics of this control are described
in detail in the main text, with the exception of the role of endocytosis in neurotransmission, in particular at the
synapse, which is not herein reviewed (for reviews on this issue, see Refs. 371, 720, 760).
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execution of polarized functions. In other words, the cell
might have learned, by exploiting an emerging property of
the system, that the quickest and most efficient way to move
things around on the PM, was to move them away from the
PM, and then back to it, through recycling. In this way the
endocytic system might have been harnessed for the execu-
tion of a number of spatially restricted functions, such as
directed cellular motility.

Another obvious emerging property of a vesicular system
resides in the size of vesicles. The PM is a vast surface in
which signaling molecules, which have been brought to-
gether to achieve effective concentrations required by the
law of mass action, can rapidly diffuse away if not pre-
vented from doing so by some energy-consuming mecha-
nism. If signaling molecules, initially concentrated in a re-
gion of the PM, are internalized and sequestered in a vesicle,
they simply have nowhere to go, and cannot diffuse away.
This would create the conditions for sustained signaling and
for “further improvements” such as the development (or
the optimization) of “coincidence detectors,” i.e., molecu-
lar functions needing two or more simultaneous, relatively
weak interactions to exert their function. Such a process,
exemplified for instance by the simultaneous interaction of
the endosomal protein EEA1 with RAB5 and PI3P (726),
would obviously be favored on a small vesicle, with respect
to the bulk PM. The physical separation of a primary and
secondary membranous compartment (the PM and the en-
dosomes) might additionally have allowed the cell to inter-
pret time-resolved signals, by converting an orderly tempo-
ral sequence into an orderly spatial sequence of compart-
ments. This development would again represent an
emerging property of the system that could readily be ex-
ploited to add complexity to signal deconvolution.

As we have already mentioned in the previous section, the
likely origin of the cell nucleus from a PM-originated system
of endomembranes carried the almost obligatory conse-
quence of developing “nuclear” functions by tinkering with
what was available, i.e., PM-originated proteins. In many
cases (such as for coat proteins and nuclear pores), gene
duplication and functional divergence might have been part
of the evolutionary strategy. In others, one might imagine
(an admittedly speculative scenario) that some proteins sim-
ply “learned” how to do additional things in the new envi-
ronment, while retaining the original function. This in turn
might help us rationalize why some endocytic proteins ap-
pear to perform moonlighting jobs in the nucleus (see sect.
VII, D and E).

It should be also considered that some cellular processes
were harnessed by endocytosis early in evolution, and there-
fore must have co-evolved with it from that point on. This is
the case, as discussed already, for the actin cytoskeleton.
Co-evolution would easily explain the numerous and bidi-
rectional liaisons between endocytosis and actin dynamics.

Another circuitry that must have been recruited to endocy-
tosis in its early days is ubiquitination. Ubiquitination is
certainly one of the distinctive, and highly conserved, fea-
tures of eukaryotes; however, its ancestry can now be traced
back to bacteria, both in terms of UB-like molecules and in
terms of enzymatic molecular machinery (unfortunately, we
cannot cover this fascinating story here, but see the beauti-
ful review by M. Hochstrasser, Ref. 317). In addition, ubiq-
uitination is firmly rooted in endocytic routes in all eukary-
otic organisms, starting from yeast (see sect. V and Ref. 446
for a recent review). Therefore, we can postulate that there
must have been very early mingling of endocytic and ubiq-
uitination pathways leading to their subsequent co-evolu-
tion.

Signaling through phosphotyrosine (pY) might instead be a
case of later convergence. This regulatory mechanism is
relatively recent in evolution and can be traced back to
�600 million years ago just prior to the appearance of
metazoans, during the transition from unicellular to pluri-
cellular eukaryotes (reviewed in Ref. 455). In particular,
while some elements of the system might be of rather old
ancestry (455), tyrosine kinases (TKs) have been found only
starting from choanoflaggelates, which probably are the
closest unicellular relative of metazoans (400, 401, 696). In
choanoflaggelates, TKs appear in rather explosive fashion,
with �120 TK domains in Monosiga brevicollis (401), and
many of them already displaying the typical RTK configu-
ration known in metazoans. This might mean that, from the
very beginning, the evolution of pY signaling was con-
strained by the topology of an endomembrane system. In
other words, what is considered the most distinctive signal-
ing feature of metazoans (pY and TKs) might have been
“forced” to evolve in a certain way because of its associa-
tion ab initio with a preexisting system of spatial con-
straints. The vast interconnection between the UB and pY
system, especially at the level of hubs (22), might very well
have been directed and/or facilitated by the fact that the two
signaling systems shared the same spatial platform (endo-
membranes).

In summary, a mixture of emerging properties, almost
obligatory consequences, and coevolution of early and late
convergent pathways might have transformed endocytosis
from its primordial trade into something rather different: a
powerful communication and compartmentalization infra-
structure or, in essence, what we define as “the cell logistics
of the cell.”

B. A Picture Is Worth a Thousand Words

The evolution from prokaryotes to eukaryotes might have,
therefore, been marked by a transition from an intracellular
environment, in which communication was determined
largely by free diffusion, to one in which a specialized in-
frastructure became available. The networking abilities of
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this infrastructure might have vastly transcended those re-
quired by the original “purpose” because of a number of
emerging properties.

To illustrate how this might have been a turning point in
evolution, so powerful as to become one of the founding
blocks in the development of a completely new cell plan (the
eukaryotic cell plan), we propose an analogy with the road
system of the ancient Romans (694). There is little doubt
that the might of Rome rested to a great extent on their road
system. This system (some 50,000 miles) was built essen-
tially for military purposes. Its emerging properties, how-
ever, were such that the system became central to the vital-
ity of the Empire, as it fostered commerce, economy, the
mail system, and prompted the development of new tech-
nology to maintain and develop the system itself for pur-
poses different from the original ones. One property of the
system that is of great relevance to our analogy is that it
allowed the transfer not only of “hardware” (a legion, a
payload, a letter), but also of “software” (laws, customs,
religion). In the Internet era this might not appear to be a
great accomplishment, but it is indeed the basis of civiliza-
tion as we know it.

By analogy, the infrastructure that we call endocytosis (in-
cluding all aspects of trafficking and of derivatives of endo-
cytosis, such as the development of a cell nucleus) allows the
intracellular movement of hardware (e.g., a nutrient) or of
software (e.g., instructions on how to make a cell move
directionally) and allow cell compartmentalization, regard-
less of how and why it came into being. As with all transport
systems, there are structural components (all proteins
needed for the actual functioning of the system, i.e., the
majority of what we call endocytic proteins) and passengers
(other molecules) that use the service. Passengers can be of
different kinds: commuters would be the regular passengers
(cargoes and associated machinery) for which the system
was initially designed or that learned how to associate with
it for the specific purpose of being carried around either to
be delivered to a destination or to deliver the information
that it is associated with them. Hitchhikers would be mol-
ecules that associate with the system (i.e., they hitch a free
ride), for purposes unrelated to endocytosis, without alter-
ing the functioning of the system. One advantage that a
hitchhiker might gain by doing so is, for instance, to remain
physically segregated and blocked (or regulated) until the
time is right for the execution of its function. The concept of
hitchhiking is perhaps best visualized by considering its de-
viations, represented by hijackers. These are violent hitch-
hikers that sidetrack the system, causing its malfunction.
Pathogens, such as viruses and bacteria, are examples of this
situation (not reviewed here, but see Refs. 274, 517). In
addition, increasing evidence (see sect. VII, A and B) indi-
cates that cancer proteins might usurp the endocytic system
to confer a proliferative advantage to the transformed cell.

Of course, there is no sharp demarcation to distinguish
commuters from hitchhikers. This would essentially depend
on whether the association with the endocytic system is part
of the “core” function of the molecule (as it would be the
case of a receptor for a nutrient, e.g., the TFR, a true com-
muter) or an “accessory” one that helps the optimization of
the function of the hitchhiker. Furthermore, hitchhikers
(and to some extent also commuters) might very likely not
maintain their status for long (in evolutionary time), as they
might acquire, as a result of continuous evolutionary tin-
kering, some endocytic role, and thus start to contribute to
the functioning of the endocytic system, while retaining
their original occupation (we refer to this situation as that
of ticket holders, i.e., of molecules that start to pay a price
for the ride). Some structural components of the endocytic
machinery might actually find themselves in a similar con-
dition, in which they learn how to do things unrelated to
their primary endocytic function, simply because they inter-
act with hitchhikers on the endomembrane system. These
“new jobs” might be so unrelated to the original ones, as to
appear to be moonlighting jobs, thus explaining a number
of instances in which endocytic proteins appear to execute
completely unrelated functions.

The question is whether there is experimental support for
this scenario. We believe so. For instance, the endocytic
function of clathrin becomes increasingly important in evo-
lution, from yeast to mammals (374, 778), suggesting in-
creasing participation in endocytic events. A similar situa-
tion occurs in the case of clathrin adaptors, such as AP-2,
that seems to have a limited function in endocytosis in yeast
(108), but is pivotal in mammals (reviewed in Ref. 135). In
the case of dynamin, it has been suggested that the primor-
dial function of this GTPase is related to the regulation of
mitochondrial inheritance. During evolution, some dy-
namins were “recruited” to the endocytic pathway to exe-
cute vesicle fission. Interestingly, this event seems to have
happened through convergent evolution during the ciliate
and metazoan radiation (189), thus indicating that the en-
rollment of dynamin to the endocytic machinery occurred
more than once, and independently, during evolution. Re-
cently, putative endocytic functions have been attributed to
known tumor suppressor genes, such as MERLIN/NF2,
VHL, and TP53 (194, 329, 490), which might further cor-
roborate the idea of “recruitment” to the endocytic path-
way of growth regulators.

The best example, however, is probably the protein NUMB
(see sect. VII, C and F3). There appear to be three basic
cellular functions intersected by Numb: 1) endocytosis, and
in particular recycling; 2) the regulation of the UB network;
and 3) cell polarity, in connection with the PAR polarity
complex (reviewed in Ref. 592). Numb appears in evolution
roughly with bilateral animals (592). By this time, two of
the functions to which Numb participates, endocytosis and
ubiquitination, are already firmly planted, and intercon-
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nected, in the eukaryotic cell’s make-up (see above). It is
unlikely, therefore, that Numb might have evolved in direct
conjunction with these processes. However, the appearance
of Numb roughly coincides with the appearance of the PAR
complex. While polarity (and the related event of differen-
tial inheritance) is perhaps as old as cellular life (for a re-
view, see Ref. 488), a clear existence of proteins of the PAR
complex can be traced back in animals only until roughly
500 million years ago, probably with the emergence of an-
cestors of bilateral animals (e.g., nematodes, flies, and
mammals) (reviewed in Ref. 260). It is possible, therefore,
that Numb evolved (or co-evolved) together with the PAR
complex, although it is impossible to say whether it would
have been connected specifically to one of the multiple func-
tions of the PAR complex in animal cell polarization. Re-
gardless, Numb might represent (and might have evolved to
be) a critical connector between polarization and endocy-
tosis. Why this should be so is, obviously, a matter of spec-
ulation. However, many of the functions of the PAR com-
plex, e.g., in the maintenance of epithelial cell polarity or in
cell migration or in ACD, do require a tight coregulation
with vesicular intracellular transport (discussed in Ref. 260)
and, as discussed earlier in the context of SARA-containing
endosomes, there is emerging evidence that unequal inher-
itance of endosomes might play a crucial role in ACD (see
sect. VIIC1). Thus Numb might have evolved with an orig-
inal role in polarity, and because of its membrane location
might subsequently have acquired additional roles in the
connected endocytic/UB networks, liaising them with the
hardware of polarity as well as participating with them in a
polarity-independent fashion: in essence the characteristics
that we expect of a ticket holder.

C. Deconvoluting the “Matrix”

In the previous two paragraphs we have tried to depict a
possible scenario to explain the fact that the present picture
of endocytosis, as derived from a wealth of experimental
evidence, is that of a very pervasive program that permeates
basically every aspect of cell physiology and regulation. In
our opinion, the simplest explanation for this is that endo-
cytosis (in its wider meaning of cell’s logistics) evolved not
so much as a “stand alone” process that subsequently infil-
trated other processes, but rather that it represented a
quantum leap in cellular organization that allowed the de-
velopment of a completely new cellular plan: the eukaryotic
cell plan. In other words, what we call endocytosis is just
one particular facet of a vaster code that supports the eu-
karyotic cell plan. “Endocytosis” in the classical sense is
therefore one viewpoint of the code: the one that we initially
discovered, and possibly the one that constituted the initial
advantage for its selection. We have coined the term endo-
cytic matrix to help visualize this concept (694) (FIGURE
10). The term matrix might be understood here roughly in
the sense of computer sciences, to indicate the network of
intersections between input and output functioning as a

decoder. This might render justice to all the intersections
between endocytosis and signaling, but is perhaps too lim-
ited. What we really had in mind was the science fiction
movie “The Matrix” in which a hidden program (the Ma-
trix) controls the life of an entire society. The program is
paradoxically inconspicuous because society is so deeply
built on it as to become unthinkable in the absence of the
Matrix.

So, we have moved, in little more than a decade, from a view
of endocytosis as a tool for transporting nutrients to a view
in which endocytosis is so deeply interconnected with sig-
naling that the two processes are impossible to distinguish,
to the extent that they should be conceptualized as a single
process. In previous work we defined this as “an insepara-
ble partnership” (165). Perhaps it is time now to move to
the next level of understanding, beyond the partnership, to
the level of the endocytic matrix as the cornerstone (or one
of the cornerstones) of the eukaryotic cell plan. In this new
outlook, endocytosis and signaling are no longer “simply”
two deeply ingrained processes, but are instead two facets
of an even wider program (FIGURE 10).

The major value of the concept of matrix is, in our opinion,
heuristic, in that it provides guidance for what we need to
do to unravel its workings. The properties of the matrix are,
in what we propose, at the systems level; thus its deconvo-
lution needs to be at this level. With this, we certainly do not
mean to say that high-resolution mechanistic approaches
are not essential. We will need, for instance, mechanistic-
reductionistic knowledge to build a “reference” map of the
endocytic matrix. This map can be obtained through the in
vitro reconstitution of individual steps of the endocytic pro-
cess coupled to single molecule resolution imaging, to add
spatial and temporal aspects. Such a map will define the
molecular workings of both core and accessory endocytic
machinery. We will need to do this in a very quantitative
way, to obtain parameters to feed into bottom-up mathe-
matical modeling efforts. This will allow the incorporation
of kinetics aspects and membrane constraints and dynamics
into models of signal transduction. At the same time, sys-
tems approaches through probabilistic modeling will define
the impact of single cell heterogeneity on various endocytic
steps (see, for instance, Ref. 735).

Yet, the impact of endocytosis and traffic on cellular and
organismal homeostasis might not be decoded solely
through high-resolution studies (even if integrated by bot-
tom-up modeling), and will probably require systematic
strategies. This approach, pioneered by the group of Ma-
rino Zerial (132, 597), has been directed so far to the un-
derstanding of how the perturbation of genes affects endo-
cytosis and traffic. We predict that an even higher level of
knowledge might come from systematic studies of the im-
pact of the endocytic machinery on nonendocytic pheno-
types. This “functional map”, complemented by the various
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ongoing interactome studies, will provide us with a starting
point to understand the full impact of the endocytic pro-
gram and will be propedeutic to any attempt to reverse-
engineer the eukaryotic cell plan. The vast involvement of
subversion of endocytosis in human diseases forecasts that
the eventual deconvolution of the endocytic matrix will be
important not only for cell physiology, but also for our
ability to fight diseases.
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