Localization and Targeting of Voltage-Dependent Ion Channels in Mammalian Central Neurons

HELENE VACHER, DURGA P. MOHAPATRA, AND JAMES S. TRIMMER

Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences and Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California

I. Overview of Mammalian Brain Voltage-Dependent Ion Channels
 A. Introduction
 B. General structural features of the principal subunits of voltage-dependent ion channels
 C. Molecular diversity of the principal subunits of voltage-dependent ion channels
 D. Auxiliary subunits of voltage-dependent ion channels
 E. Techniques for mapping voltage-dependent ion channel expression in mammalian brain

II. Voltage-Dependent Potassium Channel Localization in Mammalian Brain
 A. Overview of mammalian brain voltage-dependent potassium channels
 B. K_v1 subfamily and associated auxiliary subunits
 C. K_v2 subfamily
 D. K_v3 subfamily
 E. K_v4 subfamily and associated auxiliary subunits
 F. K_v7 subfamily
 G. K_v5, K_v6, and K_v8-12 subfamilies

III. Voltage-Dependent Sodium Channel Localization in Mammalian Brain
 A. Overview of mammalian brain voltage-dependent sodium channels
 B. Na_v1 subfamily
 C. Na_v auxiliary subunits

IV. Voltage-Dependent Calcium Channel Localization in Mammalian Brain
 A. Overview of voltage-dependent calcium channels
 B. Ca_v1 subfamily
 C. Ca_v2 subfamily
 D. Ca_v3 subfamily
 E. Ca_v auxiliary subunits

V. Voltage-Dependent Ion Channel Repertoire of Specific Neuronal Compartments
 A. Axons
 B. Presynaptic terminals
 C. Soma and proximal dendrites
 D. Distal dendrites

VI. Mechanisms Underlying Voltage-Dependent Ion Channel Localization
 A. K_v channels
 B. Na_v channels
 C. Ca_v channels

VII. Concluding Remarks
I. OVERVIEW OF MAMMALIAN BRAIN VOLTAGE-DEPENDENT ION CHANNELS

A. Introduction

Mammalian central neurons express a large repertoire of voltage-dependent ion channels (VDICs) that form selective pores in the neuronal membrane and confer diverse properties of intrinsic neuronal excitability. This allows mammalian neurons to display a richness of firing behaviors over a wide range of stimuli and firing frequencies. The complex electrical behavior of mammalian neurons is due to a huge array of VDICs with distinct ion flux rates and selectivity, although the major VDICs underlying neuronal excitability and electrical signaling are those selective for Na$^+$, K$^+$, and Ca$^{2+}$. Neuronal VDICs also exhibit widely differing properties of how sensitive their gating, or the opening or closing of the channel pore, is to changes in membrane potential. Different VDICs also differ in the kinetics of these gating events. Importantly, in terms of the mammalian brain, different VDICs differ widely in their cellular expression and subcellular localization, impacting their relative contribution to brain function. This functional diversity is based on expression of dozens of VDIC subunits that can assemble into complicated multisubunit protein complexes with distinct properties, and their subsequent targeting to and retention at specific sites in the neuronal membrane. Molecular cloning and genomic analyses have revealed a diversity of ion channel subunits that was arguably unanticipated from previous physiological and pharmacological studies. The molecular definition of the mammalian VDIC family has led to the development of molecular tools that has allowed for studies aiming to link expression and function of specific VDIC subunits with neuronal excitability and electrical signaling in specific classes of mammalian brain neurons and neuronal networks. Such efforts find justification in leading towards a better fundamental understanding of the molecular processes that shape neuronal function, but also in identifying and validating novel targets for discovery research aimed at developing new therapeutics for central nervous system (CNS) disorders. Here we review the findings from these studies and the implications for these goals.

B. General Structural Features of the Principal Subunits of Voltage-Dependent Ion Channels

VDICs selective for Na$^+$, K$^+$, and Ca$^{2+}$ are referred to as Na$_v$, K$_v$, and Ca$_v$ channels, respectively. The macromolecular protein complexes that form these channels comprise numerous subunits with distinct structural and functional features. All mammalian VDICs contain one (Na$_v$, Ca$_v$) or four (K$_v$) transmembrane pore-forming and voltage-sensing subunit(s) termed α (for Na$_v$ and K$_v$) or α_1 (for Ca$_v$). These polypeptides exist in two general forms: individual K$_v$ channel α subunits (Fig. 1) with six transmembrane segments (termed S1–S6) that co-assemble to form tetrameric complexes, and Na$_v$ channel α (Fig. 3) and Ca$_v$ channel α_1 subunits (Fig. 5) that resemble four tandemly concatenated K$_v$ α subunits and contain four internally repeated “pseudosubunit” S1–S6 domains and comprise a single 24 transmembrane segment subunit (376). These principal VDIC subunits form the major structural and functional unit of the channel and have been the focus of some of the most exciting biophysical and structural studies in all of biology in the past two decades. Much of this work has focused on the K$_v$ channel α subunits, which from a molecular standpoint are more amenable to structure-function analyses than are the larger Na$_v$ α and Ca$_v$ α_1 subunits (187, 207).

The picture that emerges is that the core region, containing the six transmembrane segments of the K$_v$ α-subunit (or Na$_v$, Ca$_v$ α or Ca$_v$ α_1 pseudosubunit), is divided into two distinct modular domains: the voltage-sensing module bounded by transmembrane segments S1–S4 and the pore module bounded by transmembrane segments S5–S6. The fourth transmembrane segment, or S4, of each subunit acts as the main voltage-sensing component of the voltage sensor module, which responds to changes in the transmembrane electrical potential and undergoes conformational changes that lead to the voltage-dependent gating of the channel (141, 317). The ionic conductance pathway or pore, which is responsible for rapid and selective potassium ion flux, is formed by the close association of the last two transmembrane segments (S5 and S6) from each of the four K$_v$ α subunits (or Na$_v$, Ca$_v$, Ca$_v$ α_1 pseudosubunits) around a central water filled cavity (79, 180). Allosteric conformational changes link voltage-dependent movement of the voltage-sensor module to the opening of the channel pore, although the precise details of these movements are not yet clear (141, 308). Molecular differences in structures of the voltage-sensor and pore modules account for the bulk of the functional differences between different VDICs in terms of their ion flux rate and selectivity, voltage dependence of gating, and kinetics (376). The S1–S6 core region also contains all of the extracellular domains of the principal subunit and, as such, contains all of the binding sites for externally acting drugs and neurotoxins (376).
The principal subunits of VDICs also have extensive cytoplasmic domains that can profoundly affect the functional characteristics described above (268). These domains can influence the coupling between the movement of the voltage-sensor module and the opening of the channel pore, and confer rapid inactivation. The cytoplasmic domains also mediate the interaction of the channel with the rest of the cell, acting as the target site for interacting proteins and posttranslational modifications that influence channel function (233). As discussed in detail below, the cytoplasmic domains of the principal VDIC subunits also play a major role in the intracellular trafficking, targeting, and retention events that shape channel expression and localization.

C. Molecular Diversity of the Principal Subunits of Voltage-Dependent Ion Channels

The transmembrane, pore-forming, and voltage-sensing α (for Na_v and K_v) or α_1 subunits (for Ca_v) of mammalian VDICs are encoded by a large and diverse family of homologous genes (374). Genes encoding the Na_v and Ca_v α/α_1 subunits arose from gene duplication and fusion of the coding regions of genes encoding six transmembrane polypeptides resembling K_v subunits with well-characterized subcellular localization in mammalian central neurons. Top right box: the classification and genetic nomenclature of K_v channel principal subunits with unknown subcellular localization in mammalian brain. Bottom left box: classification of K_v channel auxiliary subunits expressed in mammalian central neurons, and their functional effects on K_v α subunits.
lular trafficking, posttranslational modification, stability, and localization (333).

The complexity of the ion channel gene family, combined with a dizzying array of names given to the genes and/or cDNAs as they were isolated, have resulted in a fair degree of confusion in the molecular nomenclature of VDICs. As a response to the growing number of home-grown appellations for cloned Kᵥ channels 𝛼-subunits, Chandy (45) proposed a systematic nomenclature system that is now widely accepted. This system was later adopted for Caᵥ (87) and Naᵥ (98) channel 𝛼-subunits by consortia of involved investigators. Together, this has resulted in a clear, systematic, and unambiguous nomenclature for nearly all VDICs (374). The nomenclature system is based on the chemical symbol for the principal physiologically permeant ion (K for potassium, Ca for calcium, and Na for sodium), followed by the abbreviation of the ligand, which, in the case of this review, is always voltage (v). Thus we will be focusing this review on voltage-dependent potassium (Kᵥ), sodium (Nav) and calcium (Caᵥ) channels. The nomenclature and molecular relationships within each of these families of voltage-dependent channels has recently been updated in detailed compendiums; we refer the reader to these as excellent and comprehensive sources for information on Kᵥ (107), Naᵥ (42), and Caᵥ (43) channels.

The remainder of the nomenclature relates to the gene subfamilies within these broad ion channel families. For example, the prototypical Kᵥ channels have been divided into 12 subfamilies (Kᵥ1–Kᵥ12) based on relative sequence homology (107). Kᵥ1-4 channels are in one cluster; Kᵥ7 in another; Kᵥ5, -6, -8, and -9 in another; and Kᵥ10-12 in the last (374, 376). Naᵥ channels are primarily within the Naᵥ1 family, which contains all of the classical voltage-dependent sodium channels (42). The outlying second family, both in terms of sequence homology and function (termed Nax), contains channels whose sequences share some similarity to Naᵥ1 sequences but have never been functionally expressed to verify their ability to function as Naᵥ channels (42), although genetic evidence suggests a role in sodium homeostasis in mouse brain (120). Caᵥ channels have been divided into three groups based on both sequence homology and function: Caᵥ1, which comprise L-type high-voltage-activated channels; Caᵥ2, which form P/Q-, N-, and R-type high-voltage-activated channels; and Caᵥ3, which are the T-type low-voltage-activated channels (43).

A parallel nomenclature for ion channel genes has been developed by mammalian geneticists, who assigned official HUGO Human Gene Nomenclature symbols in conjunction with the human genome project (30). The Kᵥ 𝛼-subunit genes are named KCN*, with the original four gene families assigned the letters A–D (i.e., Kᵥ1–Kᵥ4 = KCNA–KCND). Families Kᵥ5-12 have other designations as detailed below. The specific gene number is then derived from the subunit nomenclature, such that Kᵥ1.1 = KCNA1, Kᵥ1.4 = KCNA4, Kᵥ2.1 = KCNB1, Kᵥ4.2 = KCND2, etc. Similarly, Naᵥ1.1–Naᵥ1.5 𝛼-subunit genes are simply assigned the name SCN, and the numerical designation used in the Naᵥ1 nomenclature followed by an A for a subunit (e.g., Naᵥ1.1 = SCN1A, Naᵥ1.2 = SCN2A, Naᵥ1.3 = SCN3A, etc.). For Naᵥ1.6–Naᵥ1.9 𝛼 subunits, the HUGO gene name is offset by two relative to the accepted 𝛼-subunit nomenclature, as Nax subunits account for SCN6A and SCN7A. As such, Naᵥ1.6 = SCN8A, Naᵥ1.7 = SCN9A, etc. The nomenclature for Caᵥ genes is even more complex, as the names are based on the classification system that was in place before a more systematic nomenclature was adopted, such that the gene for Caᵥ1.1 (nee α₁S) is CACNA1S, Caᵥ3.1 (nee α₁C) is CACNA1G, etc. Thus some knowledge of the physiological and pharmacological characteristics of the channel, as well as the history of its identification and characterization, is needed to accurately sort through the HUGO nomenclature for Caᵥ genes. Throughout this review, we will predominantly use the nomenclature system developed by ion channel researchers (i.e., Kᵥ, Naᵥ and Caᵥ), but will refer to the HUGO system for clarification or when referring to the gene itself.

Voltage-dependent ion channel 𝛼/𝛾-subunit genes are dispersed throughout the genome, although certain highly related channel genes are found clustered in multigene complexes. Examples of ion channel gene clustering in the mammalian genome include Naᵥ1.1, Naᵥ1.2, Naᵥ1.3, and Naᵥ1.7 (the SCN1A, SCN2A, SCN3A, and SCN9A loci, respectively) on 2q23-24 (14, 193), Naᵥ1.5, Naᵥ1.8, and Naᵥ1.9 (the SCN5A, SCN10A, and SCN11A loci, respectively) on 3p21-24, and Kᵥ1.1, Kᵥ1.5, and Kᵥ1.6 (KCNA1, KCNA5 and KCNA6) on 12p13 (4). These clusters presumably represent the products of gene duplication events that led to the diversity of Naᵥ and Kᵥ genes observed in higher mammals (6, 42, 97). The genes themselves can range from the quite simple to the staggeringly complex. On the simple end of the spectrum, all six of the Shaker-related Kᵥ1.1 𝛼-subunit genes expressed in mammalian brain (Kᵥ1.1–Kᵥ1.6) are encoded by intronless open reading frames (47, 107). At the opposite end of the spectrum is the CACNA1E gene (encoding the Caᵥ2.3 channel 𝛼 subunit) that encodes a polypeptide of ~2,300 amino acids in 49 exons within a gene that encompasses >388 kb of genomic sequence on human chromosome 1 (http://www.genecards.org/cgi-bin/carddisp.pl?gene=CACNA1E). Even genes encoding small, cytoplasmic auxiliary subunits can be quite complex. The KCNAB1 gene is over 250 kb in length, and 21 exons are used to encode the relatively small (400 amino acid, 40 kDa) gene product (169) (http://www.genecards.org/cgi-bin/carddisp.pl?gene=KCNAB1).
D. Auxiliary Subunits of Voltage-Dependent Ion Channels

Native neuronal VDIC protein complexes also contain a variety of auxiliary subunits that are stable components of the channel complex. These subunits profoundly influence the functional properties of associated principal subunits, as well as acting as determinants of expression and localization.

Native neuronal K_v channel complexes contain both cytoplasmic and transmembrane auxiliary subunits. These best characterized of these are the cytoplasmic K_v1α, β subunits (Fig. 1) associated with K_v1 family members (240). The bulk of K_v1 channel complexes in mammalian brain have associated K_v1α, β subunits (259). Four K_v1α subunit genes exist in the human genome, and alternative splicing can generate a number of functionally distinct isoforms (240). Inclusion of the K_v1.1 subunit in K_v1 channel complexes containing K_v1.1 or K_v1.2 dramatically alters the channel gating properties, converting the channels from sustained, or delayed-rectifier type, to rapidly inactivating, or A type (254). Moreover, the specific α- and β-subunit composition of native complexes can dramatically impact both the expression level and function of K_v1 channels in mammalian neurons (173, 331, 333). K_v1α subunits exhibit weak overall sequence similarity (198) but striking structural similarity (104) to aldo-keto reductase enzymes. Enzymatic activity of K_v1α subunits against artificial substrates has recently been demonstrated (354). As discussed in detail below, K_v1α, β subunits are also major determinants of K_v1 channel localization (101).

Accessory subunits for K_v4 channel complexes have also been identified recently and are encoded by two distinct sets of proteins (139). One set is a family of cytoplasmic calcium binding proteins, called KChIPs (Fig. 1), that are members of the neuronal calcium sensor gene family (5). At least four KChIP genes have been reported to exist in mammals (5, 122), and multiple alternatively spliced isoforms of each KChIP gene product have been reported (26, 122, 322, 341). With the exception of the KChIP4α splice variant, in heterologous expression systems all KChIP isoforms increase the surface density (302) and slow the inactivation gating and speed the kinetics of recovery from inactivation (5) of coexpressed K_v4 channels. More recently, Rudy and colleagues (217) reported the identification of a transmembrane dipeptidyl-peptidase-like protein (DPPX) as an accessory subunit of native mammalian brain K_v4 channel complexes (Fig. 1). Coexpression of different combinations of DPPX, KChIPs, and K_v4 subunits gives rise to A-type currents whose diverse biophysical properties match very closely the distinct properties of native somatodendritic A-type currents in different mammalian neurons (139).

In addition to these stereotypical K_v1 channel auxiliary subunits, there exist in the genome genes encoding a number of “electrically silent” α-subunit-like polypeptides (80). These make up the K_v5, K_v6, K_v8, and K_v9 subfamilies of principal or α subunits, but are to some extent analogous to auxiliary subunits in that in themselves they cannot form functional channels, but in heterologous expression systems can coassemble with and functionally modify channels formed from bona fide K_v1α subunits (234). The contribution of these subunits to native mammalian brain K_v1 channels has not yet been established.

Native neuronal Na_v1 channels have a wide array of auxiliary subunits (Fig. 5). Na_v1α, β subunits resemble K_v1α, β subunits in that they are cytoplasmic and have similar effects on intracellular trafficking (263), although a number of additional functions have recently been identified, due to the presence of MAGUK-like guanylate kinase and SH3 domains that mediate diverse protein-protein interactions (118). There exist four Na_v1α, β subunits Ca_v1.1-4 Na_v1α₁ subunits are the product of a single gene whose polypeptide product is posttranslationally cleaved and then subsequently covalently linked by disulfide bonding to yield the mature transmembrane auxiliary α₁/δ-subunit complex (67). Skeletal muscle Ca_v1 channels contain tetraspan Ca_v1γ subunits (27, 136). Related proteins of the stargazin family are found in brain and interact with diverse membrane proteins (49), including AMPA-type glutamate receptors, to regulate their trafficking and function (226). A role for stargazins as auxiliary subunits of brain Ca_v1 channels has not been firmly established.

E. Techniques for Mapping Voltage-Dependent Ion Channel Expression in Mammalian Brain

The initial isolation of cDNA clones encoding Na_v1 (220), Ca_v1 (325), and K_v1 (12, 144, 232) α subunits initiated the molecular definition of the VDIC family that became complete with the successful completion of sequencing of the human, mouse, and rat genomes. These analyses have allowed for tremendous insights into the sequences of VDIC genes, mRNAs, and the encoded polypeptides. This allowed for the generation of subtype-specific molecular probes for measuring expression levels of VDIC mRNAs in extracts of brain tissue by Northern blots, RNAse protection assays, and more recently by RT-PCR. Such probes can also be used to determine cellular patterns of VDIC mRNA expression by in situ hybridization. These
nucleotide probes can be designed with a high level of confidence as to their specificity, although the use of multiple probes targeting different regions of the target mRNA is justified (335). Detailed analyses of expression patterns have provided invaluable information as to the relative expression patterns of different VDIC mRNAs in adult brain, at different stages of brain development, in different brain regions, and in specific neuronal populations.

The isolation of cDNAs encoding VDIC subunits, and the subsequent deduction of the primary sequence of the encoded polypeptides, allowed for the efforts to generate specific antibodies targeting VDIC subunits. While this effort still continues today, there now exist extensive libraries of polyclonal and monoclonal antibodies from academic and commercial sources that can be used to identify, isolate, and map cellular and subcellular expression patterns of VDIC principal and auxiliary subunits in mammalian brain. This has led to an explosion of information as to the expression and localization of specific VDICs, which, combined with results from detailed physiological and pharmacological studies, can begin to yield a picture of the role of specific VDICs of defined subunit composition in mammalian central neurons. There are numerous issues that have arisen from the use of insufficiently characterized antibodies in such studies, many of these have been addressed in a number of recent articles (262, 278, 279, 335). While these will not be addressed in detail here, we will try throughout to provide insights into the apparent level of characterization and validation of antibodies used in studies described below, to aid in critical evaluation of any subsequent results.

II. VOLTAGE-DEPENDENT POTASSIUM CHANNEL LOCALIZATION IN MAMMALIAN BRAIN

A. Overview of Mammalian Brain Voltage-Dependent Potassium Channels

\(K_{\alpha} \) channels are members of a diverse gene family. The nomenclature system for \(K_{\alpha} \) channel \(\alpha \) subunits, originally proposed by Chandy and colleagues (45, 107) and now widely accepted, is based primarily on the relatedness of amino acid sequences between the different \(K_{\alpha} \) \(\alpha \) subunits. The remainder of the nomenclature relates to the gene families within these ion channel groups (Fig. 1). The prototypical \(K_{\alpha} \) channels have been divided into four families \((K_{1-4}, K_{1-4} \) based on the relative similarity of their amino acid sequences and on their relatedness to their single gene orthologues in \(Drosophila: K_{1} (Shaker), K_{2} (Shab), K_{3} (Shaw), \) and \(K_{4} (Shal) \). More recently discovered \(\alpha \) subunits make up the \(K_{5-12} \) subfamilies. Note that among these subfamilies, the \(K_{5}, K_{6}, K_{8}, \) and \(K_{9} \) \(\alpha \) subunits have not been shown to yield functional expression, but in heterologous cells are able to modulate the expression level and/or gating of channels comprising coexpressed bona fide \(K_{\alpha} \) channel \(\alpha \) subunits (107).

A parallel nomenclature for \(K_{\alpha} \) channel \(\alpha \) subunit genes has also been established by the HUGO Gene Nomenclature Committee (Fig. 1). Genes encoding the four original \(K_{1-4} \) subfamilies of \(\alpha \) subunits are named \(KCN* \), and assigned the letters A–D (i.e., \(K_{1-4} = KCNA-KCN4 \) and the specific gene numbers following the \(K_{\alpha} \) nomenclature (e.g., \(K_{1.1} = KCNA1, K_{1.4} = KCNA4, K_{2.1} = KCNB1, \) etc.). \(K_{5-12} \) subfamilies have been assigned \(KCNF (K_{5}), KCNG (K_{6}), KCNQ (K_{7}), KCNV (K_{8}), KCNS (K_{9}), \) and \(KCNH (K_{10-12}) \) gene names by HUGO.

Molecular characterization of \(K_{\alpha} \) channels originally lagged behind that of \(Na_{\alpha} \), and \(Ca_{\alpha} \), channels. Due to the diversity of \(K_{\alpha} \) channel \(\alpha \)-subunit genes, the potential for oligomerization and the complex repertoire of \(K_{\alpha} \) channels in any given excitable cell, the biochemical approach of purifying \(Na_{\alpha} \) channels from eel electroplax (1) and rat brain (113), and \(Ca_{\alpha} \) channels from skeletal muscle (63), and that ultimately yielded success in cloning \(Na_{\alpha} \) (220) and \(Ca_{\alpha} \) (325) channel \(\alpha \) subunits, did not yield amounts of \(K_{\alpha} \) channel subunits amenable for protein sequencing. The breakthrough for \(K_{\alpha} \) channel molecular characterization came from concerted genetic and molecular analyses of potassium channel mutants in the fruit fly \(Drosophila melanogaster \) (133). These efforts resulted in the isolation of cDNAs encoding the \(K_{\alpha} \) channel \(\alpha \) subunit encoded at the \(Shaker \) gene locus (12, 144, 232). It was immediately clear from the deduced \(Shaker \) amino acid sequence that this \(K_{\alpha} \) channel \(\alpha \) subunit strongly resembled one of the four internally repeated homologous pseudosubunit domains of an \(Na_{\alpha} \), or \(Ca_{\alpha} \), channel. This led to the proposal, initially substantiated by biophysical analyses (186) and more recently by direct visualization of cryo-electron microscopic (155, 156, 224, 307) and crystallographic (180) structures, that \(K_{\alpha} \) channels are comprised of functional tetramers of individual \(\alpha \) subunits. In \(Drosophila \), in addition to \(Shaker \), four other \(K_{\alpha} \) channel genes were present, named \(Shab, Shal, \) and \(Shaw \) (275). Subsequent genetic analyses revealed the existence of \(K_{7} (KCNQ) \), \(K_{10} (Eag) \), \(K_{11} (Erg) \), and \(K_{12} (Elk) \) genes in \(Drosophila \) (177).

cDNAs encoding multiple members of each of the corresponding mammalian gene families \((Shab = K_{2} \) or \(KCNB; Shaw = K_{3} \) or \(KCNC; Shal = K_{4} \) or \(KCND; KCNQ = K_{7} \) or \(KCNQ; Eag = K_{10} = KCNH1, -5; Erg = K_{11} = KCNH2, -6, -7; \) and \(Elk = K_{12} = KCNH3, -4, -8 \)
have now been isolated and expressed. Using the Shaker cDNAs as probes, Tempel et al. (326) isolated the first mammalian K\textsubscript{\textalpha} channel cDNA, K\textsubscript{\textalpha}1.1. In rapid succession, cDNAs encoding other K\textsubscript{\textalpha} family members (K\textsubscript{\textalpha}1.2-K\textsubscript{\textalpha}1.7, the products of the KCNA1–7 genes) were isolated (reviewed in Ref. 46). These different mammalian K\textsubscript{\textalpha} family members had distinct functional properties when expressed alone (i.e., as homotetramers) in heterologous cells (316). Different K\textsubscript{\textalpha} family members could also coassemble into channels with mixed subunit composition, and such heterotetrameric channels exhibited functional properties intermediate between those of channels formed from homotetramers of the constituent subunits (123, 129, 271). Certain Kv\textsubscript{1} family members could also coassemble into channels with mixed subunit composition, and such heterotetrameric channels exhibited functional properties intermediate between those of channels formed from homotetramers of the constituent subunits (123, 129, 271). Certain K\textsubscript{\textalpha} subunits also contain strong trafficking determinants, while others do not (195). Heteromeric assembly of different subunits yields channels with intermediate trafficking characteristics (194). Thus the subunit composition of K\textsubscript{\textalpha} channels not only determines their gating and kinetic properties, but also dramatically affects their expression and localization (340).

Coincident with the identification of mammalian K\textsubscript{\textalpha}1 \alpha subunits, a cDNA encoding the rat brain K\textsubscript{\textalpha}2.1 \alpha subunit was isolated by expression cloning in Xenopus oocytes (91). The manner of cloning K\textsubscript{\textalpha}2.1 is noteworthy as it reflects the high-level expression of K\textsubscript{\textalpha}2.1 in mammalian brain. Low-stringency hybridization screening of mammalian brain cDNA libraries led to the isolation of cDNAs encoding K\textsubscript{\textbeta}3 (184, 199, 270, 373), K\textsubscript{\textbeta}4 (10, 266), K\textsubscript{\textbeta}5 and K\textsubscript{\textbeta}6 (80), and K\textsubscript{\textgamma}10, K\textsubscript{\textgamma}11, and K\textsubscript{\textgamma}12 (182, 351) \alpha subunits. The K\textsubscript{\textgamma}8 family was identified using RT-PCR performed with degenerate primers (125), and K\textsubscript{\textsigma}9 by in silico analyses of EST databases (274). The K\textsubscript{\textgamma}7 subfamily was initially identified in human genetic analyses of genes associated with a congenital heart disorder called long QT syndrome (350).

The human genome contains a total of 40 genes encoding K\textsubscript{\textalpha} channel \alpha subunits. Some of these genes generate messages that are subject to alternative splicing. In mammalian brain, the expression of many of these K\textsubscript{\textalpha} channel \alpha subunits is restricted to neurons, although glial cells may express a subset of the neuronal repertoire. In general, K\textsubscript{\textalpha} channels exhibit subfamily-specific patterns of subcellular localization (Fig. 1), as detailed below. K\textsubscript{\textalpha}1 channels are found predominantly on axons and nerve terminals; K\textsubscript{\textalpha}2 channels on the soma and dendrites; K\textsubscript{\textalpha}3 channels can be found in dendritic or axonal domains, depending on the subunit and cell type; and K\textsubscript{\textalpha}4 channel are concentrated in somatodendritic membranes (335). K\textsubscript{\textgamma}7 family members are predominantly on axons, although evidence also exists for somatodendritic K\textsubscript{\textgamma}7 channels (110). Little information is available for the subcellular localization of K\textsubscript{\textgamma}5-6 and K\textsubscript{\textgamma}8-12 \alpha subunits.

B. K\textsubscript{\textalpha}1 Subfamily and Associated Auxiliary Subunits

When expressed in heterologous systems, the neuronal K\textsubscript{\textalpha}1 \alpha subunits can generate either transient (K\textsubscript{\textalpha}1.4) or sustained (K\textsubscript{\textalpha}1.1–K\textsubscript{\textalpha}1.3, K\textsubscript{\textalpha}1.5–K\textsubscript{\textalpha}1.6) K\textsubscript{\textalpha} currents. Moreover, heteromeric assembly with one another, and coassembly with auxiliary K\textsubscript{\textalpha}2\beta subunits can generate a diversity of function from the resultant \alpha\beta channel complexes (340). In neurons, K\textsubscript{\textalpha}1 channels are found predominantly on axons and nerve terminals, although dendritic expression is also found in certain neurons (335). K\textsubscript{\textalpha}1 family members exhibit extensive coassembly to generate heteromeric channels with distinct characteristics (239). In addition, assembly with auxiliary subunits can dramatically impact expression, localization, and function of K\textsubscript{\textalpha}1 channels in mammalian neurons (339).

The predominant K\textsubscript{\textalpha}1 cellular staining pattern throughout the brain is neuronal and, subcellularly, axonal. The three most abundant K\textsubscript{\textalpha}1 subunits expressed in mammalian brain, K\textsubscript{\textalpha}1.1, K\textsubscript{\textalpha}1.2, and K\textsubscript{\textalpha}1.4, are found predominantly localized to axons and nerve terminals (335). In many cases, these subunits are components of heteromeric channel complexes, as K\textsubscript{\textalpha}1.1, K\textsubscript{\textalpha}1.2, and K\textsubscript{\textalpha}1.4 exhibit precise patterns of colocalization (260), and extensive association as shown by copurification (57, 260, 293). However, the subunit composition of channels containing these subunits varies across brain regions (288). The K\textsubscript{\textalpha}1.1 \alpha subunit in mammalian brain appears to be segregated into two major subpopulations: one associated with K\textsubscript{\textalpha}1.2 and one associated with K\textsubscript{\textalpha}1.4. K\textsubscript{\textalpha}1.1 and K\textsubscript{\textalpha}1.2 are found in the absence of K\textsubscript{\textalpha}1.4 in cerebellar basket cell terminals (167, 202, 203, 258, 260, 346, 347), the juxtaparanodal membrane adjacent to axonal nodes of Ranvier (Fig. 4D) (243, 245, 248, 249, 258, 260, 338, 346, 347), and in the terminal segments of axons (73). K\textsubscript{\textalpha}1.1 and K\textsubscript{\textalpha}1.2 are also present at axon initial segments (72, 128, 342), sometimes in association with K\textsubscript{\textalpha}1.4, where they control axonal action potential waveform and synaptic efficacy (160). K\textsubscript{\textalpha}1.1/K\textsubscript{\textalpha}1.2 channels also play a role in \mu-opioid receptor-mediated modulation of GABAergic inputs into basolateral amygdala neurons (90) and in serotonin-modulated glutamate release from thalamocortical nerve terminals (165). Low-threshold, slowly inactivating axonal K\textsubscript{\textalpha}1.2-containing channels, presumably containing either K\textsubscript{\textalpha}1.4 \alpha or K\textsubscript{\textalpha}1.2 \alpha subunits to confer inactivation, are involved in the flexible properties of intracortical axons of layer V pyramidal neurons and may contribute signifi-
cantly to intracortical processing (304). K\textsubscript{v1}-containing channels are also important in setting the firing rate of layer II/III pyramidal neurons (103). K\textsubscript{v1.1} and K\textsubscript{v1.4} are found robustly expressed in the relative absence of K\textsubscript{v1.2} within the striatal efferents in globus pallidus and pars reticulata of substantia nigra (260, 297).

Within the excitatory circuitry of the hippocampus, a number of patterns for expression for these three K\textsubscript{v1} \(\alpha\) subunits emerge, providing a striking example of the complex heterogeneity of subunit association (260). K\textsubscript{v1.1}, K\textsubscript{v1.2}, and K\textsubscript{v1.4} are highly expressed in the middle third of the molecular layer of the dentate gyrus (Fig. 2A) where they are associated with axons and terminals of the medial perforant path (212, 258, 260, 296, 297, 344, 346, 347). K\textsubscript{v1.1}, K\textsubscript{v1.2}, and K\textsubscript{v1.4} are also found in Schaffer collateral axons, while K\textsubscript{v1.1} and K\textsubscript{v1.4} colocalize, in the absence of K\textsubscript{v1.2}, in mossy fiber axons (Fig. 2A) (61, 296, 297, 346, 347), where they regulate Ca2+ influx and transmitter release (96).

However, in spite of their colocalization, it is not clear that all of the K\textsubscript{v1.1}, K\textsubscript{v1.2}, and K\textsubscript{v1.4} containing channel complexes present on perforant path and Schaffer collateral axons and terminals are heteromeric channels containing all three \(\alpha\) subunits. Lesions in entorhinal cortex have distinct effects on the distribution of K\textsubscript{v1.2} and K\textsubscript{v1.4} in the middle third of the dentate molecular layer, suggesting that while these subunits may colocalize at the light microscope level, they may be expressed, along with K\textsubscript{v1.1}, on different components of the perforant path (212). Similar results are obtained with lesions placed in other subfields. For example, in CA3 the predominant K\textsubscript{v1} channels appear to be composed of K\textsubscript{v1.1} with K\textsubscript{v1.4}, while in the Schaffer collateral pathway, K\textsubscript{v1.1} is likely to be associated with K\textsubscript{v1.2} and K\textsubscript{v1.4} (212).

Electron microscopic immunohistochemical studies have demonstrated that K\textsubscript{v1.1}, K\textsubscript{v1.2}, and K\textsubscript{v1.4} are concentrated in the axonal membrane immediately preceding or within axon terminals (61, 346, 347). The immunoreactivity for K\textsubscript{v1.1} and K\textsubscript{v1.2} has been localized to the preterminal axonal membrane in stratum (s.) radiatum (346, 347), while immunoreactivity for K\textsubscript{v1.4} has been localized to the preterminal extensions of mossy fiber axons (61). Activation of K\textsubscript{v1} channels at these sites can play a critical role in regulating nerve terminal excitability and thereby regulate neurotransmitter release, as shown by pharmacological and genetic knockdown of K\textsubscript{v1} function (74).

The other K\textsubscript{v1} \(\alpha\) subunits appear to be expressed at lower levels in mammalian brain. K\textsubscript{v1.6} is found predominantly in interneurons, although some dendritic staining is seen throughout the brain on principal cell dendrites, which also express K\textsubscript{v1.1} and K\textsubscript{v1.2} (260). Such channels presumably underlie the “D” current (313, 378). K\textsubscript{v1.3} is highly expressed in the cerebellar cortex. The bulk of this expression is in the parallel fiber axons of cerebellar granule cells, as strong in situ hybridization signal is present in the granule cell layer (163), while strong immunostaining (344) and 125I-margatoxin binding (specific for K\textsubscript{v1.2} and K\textsubscript{v1.3}) (159) are found in the molecular

![Fig. 2. Cellular and subcellular distribution of K\textsubscript{v} channels in adult hippocampus. A–C: rat. D–E: mouse. A: double immunofluorescence staining for K\textsubscript{v1.4} (red) and K\textsubscript{v2.1} (green). Note K\textsubscript{v1.4} staining in terminals fields of the medial perforant path in the middle molecular layer of the dentate gyrus, and mossy fiber axons and terminals in s. lucidum of CA3. B: immunoperoxidase staining for K\textsubscript{v3.1b}. C: double immunofluorescence staining for K\textsubscript{v4.2} (green) and K\textsubscript{v4.3} (red) in dentate gyrus. Note uniform staining for both K\textsubscript{v4} \(\alpha\) subunits in granule cell dendrites in molecular layer and K\textsubscript{v4.3} staining in scattered interneurons. D: double immunofluorescence staining for K\textsubscript{v7.2} (red) and parvalbumin (green) in CA3. White arrows depict K\textsubscript{v7.2}-negative and red arrow K\textsubscript{v7.2}-positive neurons. MF, mossy fibers; sr, s. radiatum; sl, s. lucidum; sp, s. pyramidale; so, s. oriens. [From Cooper et al. (59), copyright 2001 by the Society for Neuroscience.] E: double immunofluorescence staining for K\textsubscript{v7.2} (green) and DNA (DAPI, blue) in CA1. [From Pan et al. (229), copyright 2006 by the Society for Neuroscience.] F: in situ hybridization of K\textsubscript{v11.1} (top panel) and K\textsubscript{v11.3} (bottom panel). DG, dentate gyrus. [From Saganich et al. (272), copyright 2001 by the Society for Neuroscience.]](http://physrev.physiology.org/)
layer. The molecular layer also contains high levels of staining for Kv1.1 (260, 344), suggesting that Kv1.1 and Kv1.3 have the opportunity to form heteromeric channels on parallel fibers. The expression of Kv1.5 in the brain is overall quite low (88). What Kv1.5 expression there is may be restricted to nonneuronal cells. For example, Kv1.1, and Kv1.3 are components of delayed rectifier currents in glia (52, 150, 230) and endothelial cells (206). In mammals, Kv1.7 is expressed in skeletal muscle, heart, and pancreatic islets, but not brain (143).

In situ hybridization, immunoprecipitation, and immunohistochemical analyses have also localized sites of expression of the Kvβ1 and Kvβ2 auxiliary subunits in mammalian brain (212, 254, 258–260). Kvβ2 appears to be a component of many if not all Kv1-containing channel complexes in mammalian brain, and immunoreactivity for Kvβ2 is present in almost every location where immunoreactivity for Kv1 family α subunits is observed (259, 260). However, there is also extensive immunostaining for Kvβ2 in somata and dendrites that is not observed for Kv1 α subunits, and certain sites of intense Kv1 α subunit staining (e.g., hippocampal mossy fibers) lack robust Kvβ2 immunoreactivity (212, 259, 260). In the hippocampus, excitotoxic lesion of distinct components of the extrinsic and intrinsic circuitry reveal that the majority of Kvβ2 that is associated with Kv1 α subunits is associated with axons and presynaptic terminals of the perforant path and Schaffer collateral pathways (212). The Kvβ1 subunit, which exerts dramatic effects on the inactivation kinetics of Kv1 channels, appears to be included in Kv1 channel complexes more selectively than is Kvβ2. Interestingly, the pattern of immunoreactivity for Kvβ1 closely matches the expression pattern for Kv1.1 and Kv1.4, in that Kvβ1 is found to colocalize with Kv1.4 in the medial perforant path, mossy fiber pathway, and in striatal efferents to the globus pallidus (259, 260). Kvβ2 is found in the absence of Kvβ1 at many sites that exhibit colocalized Kv1.1 and Kv1.2, for example, in cerebellar basket cell terminals and juxtaparanodes of nodes of Ranvier (248, 260). As such, there exist distinct pairings of Kv1 α- and Kv1 β subunits in heteromeric channel complexes in mammalian brain.

C. Kv2 Subfamily

Kv2 family members form delayed rectifier Kv channels that are prominently expressed in mammalian brain, where they are localized in the somatodendritic domain of neurons. Kv2.1 was the first member of this family isolated by molecular cloning approaches and is unique in that it was identified and isolated from an adult rat brain cDNA library by expression cloning in Xenopus oocytes (91), suggestive of an unusually high level expression of Kv2.1 mRNA in adult rat brain. Thus it was not surprising when immunostaining revealed that Kv2.1 was highly expressed and has an extensive distribution throughout the mammalian brain (82, 127, 332). In fact, the cellular distribution in neurons is so broad that in many regions the cellular staining pattern of Kv2.1 resembles that of a Nissl stain. However, in spite of this broad neuronal expression, within individual neurons the staining for Kv2.1 is highly restricted, being present only on the somatic and proximal dendritic membrane (Fig. 2A), and absent from axons and nerve terminals (332). Immunoelectron microscopy (82) and excitotoxic lesion studies (212) have unambiguously confirmed the somatodendritic localization of Kv2.1. The striking subcellular distribution is accentuated by the fact that within these domains Kv2.1 is present in large clusters (82, 127, 190, 281, 332). These clusters are present on the cell surface membrane immediately facing astrocytic processes, and over subsurface cisterns underlying the plasma membrane facing astrocytes (82). The physiological basis for the highly clustered, discrete localization of Kv2.1 to these specialized membrane domains is not known.

In spite of its widespread cellular distribution, there are certain cells that stand out for having especially prominent Kv2.1 expression. In the cortex, pyramidal cells in layers II/III, and in layer V are especially striking for their high levels of Kv2.1 expression. Kv2.1 is also present in high levels throughout the hippocampus, although the levels in dentate granule cells and CA1 pyramidal cells exceed that in CA3 and CA2 pyramidal cells in both rat and mouse (Fig. 2A). However, it should be stressed that Kv2.1 is found on both principal cells and interneurons (Fig. 2A) throughout the hippocampus (82). Among interneurons, Kv2.1 is found in the majority of cortical and hippocampal parvalbumin, calbindin, and somatostatin-containing inhibitory interneurons (82). Note that Kv2.1 localization in rat brain, especially the extent of clustering, is dramatically affected by neuronal activity (209) and ischemia (208) due to changes in phosphorylation state, such that state of the subject and preparation of the sample could impact details of Kv2.1 localization.

Kv2.2 is expressed in many of the same cells that express Kv2.1. However, unlike other Kv channels (Kv1, Kv3, and Kv4 family members), the two members of the mammalian Kv2 family apparently do not readily form heteromultimers in native neurons (although see Ref. 21), as the subcellular localizations of Kv2.1 and Kv2.2 expressed in the same cells are distinct (127, 175). Kv2.2 is present on dendrites, but is present uniformly and along the entire length of the dendrite. The clustered, proximal dendritic localization of Kv2.1 is not observed for Kv2.2. Kv2.2 is present at high levels in olfactory bulb neurons and in cortical pyramidal neurons (126, 127).

D. Kv3 Subfamily

Kv3 family members have unique functional characteristics, including fast activation at voltages positive to
−10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing, and Kv3 subunits are highly expressed in fast-spiking neurons, such as neocortical and hippocampal interneurons as well as midbrain auditory neurons (269). Kv3 currents can either have sustained (Kv3.1, Kv3.2) or transient (Kv3.3, Kv3.4) characteristics and can form heterooligomeric channels with intermediate gating characteristics (269). Kv3 mRNAs are somewhat unusual among Kv α subunits in that they are subjected to extensive alternative splicing to generate subunits that differ only at their cytoplasmic COOH termini (184). This complicates studies of localization of these subunits, as the specific nature of the in situ hybridization or antibody probes used can affect which Kv3 alternative splicing isoforms are detected.

Initial in situ hybridization analyses revealed that unlike many other Kv subunits, Kv3.1 and Kv3.2 transcripts were expressed in only a small subset of cells in the cerebral cortex and hippocampus (236, 353). Interestingly, the in situ hybridization patterns of Kv3.1 and Kv3.2 were distinct, suggesting a strict cellular specificity to expression of these highly related Kv channel α subunits (353). Initial immunolocalization studies were performed using antibodies raised against the major splice variant of Kv3.1, termed Kv3.1b, which has a longer COOH terminus than the less abundant Kv3.1a variant. These and subsequent studies revealed that Kv3.1b was highly expressed in interneurons (Fig. 2B) and that expression was very low/undetectable in principal cells, such as neocortical and hippocampal pyramidal cells as well as dentate granule cells (289, 352). Kv3.1b is also robustly expressed in fast-spiking cells in the cochlear nucleus (236). Double labeling experiments (289) revealed that the subset of cortical cells labeled with anti-Kv3.1b antibodies corresponded to GABAergic interneurons expressing the calcium-binding protein parvalbumin, which are distinguished by their fast-spiking properties. Interestingly, Kv3.2 α subunits were found in non-fast-spiking, somatostatin- and calbindin-containing interneurons (53). Thus the expression patterns of Kv3.1 and Kv3.2 α subunits can distinguish different populations of interneurons, raising the possibility that interneuron firing patterns rely to some extent on the subtype of Kv3 channels expressed (166, 174, 269). Kv3.2 is also found in the cerebellar pinceau (22), in the terminals of basket cells that synapse onto Purkinje cell axon initial segments.

Another site of prominent expression of Kv3.1b subunits is in auditory neurons (83, 172, 352), especially in globular bushy cells in the anterior ventral cochlear nucleus (AVCN) and principal cells in the medial nucleus of the trapezoid body (MNTB). In AVCN neurons Kv3.1b is present in somatodendritic compartments, and in MNTB neurons in presynaptic terminals (83). The expression of Kv3.1b follows a tonotopic gradient and is present in cells transmitting high-frequency tones (83, 172). In these cells Kv3.1b is found basally phosphorylated by protein kinase C, which suppresses Kv3.1b currents (185). Activity-dependent dephosphorylation enhances Kv3.1b currents and allows for high-frequency firing at auditory synapses (309). Kv3.1b is also present at a subset of nodes of Ranvier in axons of central but not peripheral neurons, and is not present at axon initial segments (70).

In the case of mammalian brain Kv3.1, alternative splicing leads to a difference in the polarized expression of Kv3.1 variants in mammalian brain (228). The initial studies of Kv3.1b localization in mammalian brain revealed staining that was present in the soma, proximal dendrites, unmyelinated axons, and axon terminals of the parvalbumin-positive interneurons (53, 289, 352) and neurons in the cochlear nucleus (235). In contrast, Kv3.1a proteins were prominently expressed in the axons of some of the same neuronal populations, but there was little or no Kv3.1a protein expression in somatodendritic membrane.

Studies on the exogenous expression of three different Kv3.2 splice variants (Kv3.2a, -b, and -c) in polarized epithelial cells revealed that alternative splicing led to differences in subcellular localization. The Kv3.2a variant was localized to the basolateral membrane, while the Kv3.2b and Kv3.2c isoforms were found apically (238). The epithelial cell:neuron analogous membrane hypothesis (77) predicts that as such, in neurons, Kv3.2a would be localized to the somatodendritic domain, and Kv3.2b and Kv3.2c would be localized to the axon. Thus, as for Kv3.1, and also for Ca2,3, as discussed below, alternative splicing of ion channel transcripts can generate functionally similar variants of the same channel with altered subcellular distributions (228).

Kv3.3 α subunits are also widely expressed at the mRNA level in brain (269). In forebrain, Kv3.3 are coexpressed with Kv3.1b subunits in parvalbumin-positive interneurons (48). Robust Kv3.3 staining is also observed in mossy fiber axons of hippocampal dentate granule cells (48). Both Purkinje cells in cerebellar cortex and deep cerebellar nuclei contain high levels of Kv3.3b message (99). Purkinje cells have Kv3.3 protein in axons, on somata, and in proximal and distal dendrites (48, 196), where a Kv3 channel complex of Kv3.3 and Kv3.4 may play a role in shaping depolarizing events. Most brain stem auditory neurons also express Kv3.3 mRNA (172) and protein (48), where it may coassemble with Kv3.1 in a subset of cells.

Unlike Kv3.1 and Kv3.2, in neocortex and hippocampus Kv3.4 is present in principal cells (256, 353). Moreover, Kv3.4 appears to be localized to axons and nerve terminals of these cells, such that in a number of brain regions Kv3.4 is found colocalized with Kv1 family members. Combined in situ hybridization and immunohistochemistry yield a picture whereby Kv3.4 is found in ter-
minals of the perforant path, as high levels of K,3.4 mRNA, but not protein, are found in entorhinal cortex, and high levels of K,3.4 immunostaining are present in the middle third of the molecular layer of the dentate gyrus (256, 344). Intense K,3.4 staining is also observed in s. lucidum of CA3 and appears to be associated with mossy fiber axons and/or terminals (256, 344), where it may be present in heteromeric K,3 complexes with K,3.3 (48). In these regions K,3.4 may be present in the same axons and terminals as K,1.1 and K,1.4. K,3.4 is also found in cerebellar basket cell terminals, which also contain high levels of K,1.1 and K,1.2. Immunoelectron microscopy (167) revealed that although the localization of staining of K,1.1, K,1.2, and K,3.4 overlaps at the light microscope level, these subunits have distinct ultrastructural localizations. K,1.1 and K,1.2 are present in septate-like junctions formed between basket cell terminals and Purkinje cell axons, while K,3.4 is found in nonjunctional regions of the terminals (167). K,3.2 is also found in basket cell terminals at sites distinct from those that contain K,3.4, perhaps corresponding to active zones of the presynaptic terminals (22). These findings highlight the extent to which different highly related ion channel subunits can be precisely localized in neuronal membrane domains. It should be noted that recent data suggest that in certain fast-spiking cells K,3.4 may also associate with K,3.1 and/or K,3.2 α subunits to generate a fast delayed rectifier current (11). However, examples of neurons in which K,3.4 was found colocalized with K,3.1 and K,3.2 were not provided. Studies of K,3.1b (65) and K,3.4 (29) localization in certain brain stem nuclei suggest that these subunits may both localize to presynaptic terminals, for example, those in nucleus tractus solitarius. As noted above, Purkinje cell dendrites may contain a K,3.3/K,3.4 heteromeric channel that is important in shaping responses to certain, relatively strong depolarizing events (196).

E. K,4 Subfamily and Associated Auxiliary Subunits

The K,4 α subunits K,4.1, K,4.2, and K,4.3 form transient or A-type K, channels (139). Experimental knockdown of K,4 α-subunit expression in mammalian neurons results in suppression of A-type K, channels (154, 168, 191, 192, 379). K,4.1 is expressed at very low levels in mammalian brain (290), and what expression that can be detected in neurons does not correlate with A current density (114). In contrast, K,4.2 and K,4.3 are expressed at relatively high levels (290), and the expression of these subunits correlates well with neuronal A-type current density in a number of neuronal types (114, 176, 303, 310, 330). In situ hybridization analyses show that the expression of K,4.2 and K,4.3 is widespread throughout the brain, and that while in many brain regions the cellular expression of these two K,4 genes is reciprocal or complementary, there are numerous cell populations in which K,4.2 and K,4.3 are coexpressed (290).

Immunoreactivity for K,4 subunits is concentrated primarily in the dendrites of central neurons (335). K,4.2 is expressed at high levels in many principal cells, while K,4.3 is found in a subset of principal cells and in many interneurons (335). In the hippocampus, dentate granule cells express high levels of K,4.2 and K,4.3 mRNA (290), and robust staining for both of these subunits (Fig. 2C) is present in the molecular layer of the dentate gyrus, with enhanced staining in the outer third (190, 205, 257, 297). That this immunostaining is in the distal granule cell dendrites that receive input from the lateral perforant path is supported by elimination of such staining upon excitotoxic lesion of the dentate gyrus (257).

A similar colocalization of K,4.2 (190, 205, 257, 297) and K,4.3 (205, 257) is seen in the distal basal (in s. oriens) and apical dendrites (in s. lucidum and s. radiatum) of CA3 pyramidal neurons. That the staining for K,4.2 and K,4.3 in CA3 s. lucidum is to CA3 pyramidal cell dendrites, as opposed to dentate granule cell axons that form mossy fibers, is supported by the lack of an effect of excitotoxic lesions within the dentate gyrus on this staining (257). Interestingly, CA2 and CA1 pyramidal cells express K,4.2 mRNA (290, 297) and protein (190, 205, 257, 297) in the absence of K,4.3 mRNA (290) and protein (205, 257), suggesting a unique role for K,4.2 homotetramers in the distal dendrites of these cells relative to the situation in CA3. Conversely, throughout the hippocampus, K,4.3 mRNA (290) and protein (205, 257) are found in the absence of K,4.2 in many interneurons, such as those located adjacent to the granule cell layer in dentate gyrus (Fig. 2C). Thus different hippocampal cell types appear to have different requirements for homotetrameric and heterotetrameric K,4.2 and K,4.3 channels. The specific targeting of K,4 channels to dendrites of principal cells in the hippocampus has been confirmed by excitotoxic lesion studies (257). In all cases the staining of K,4 channels on dendrites tends to be quite uniform, with little evidence of local concentrations of clustered immunoreactivity associated with dendritic spines, postsynaptic densities or other subcellular domains.

Principal cells and interneurons in neocortex also exhibit specific patterns of K,4.2 and K,4.3 staining (32, 257). Pyramidal cells in layer II of rat parietotemporal cortex exhibit high levels of K,4.3 staining, while K,4.2 staining predominates in those in layer V (257). The expression of K,4.2 and K,4.3 in pyramidal cell dendrites was further supported by studies in transgenic mice expressing fluorescent protein in a subset of pyramidal neurons in visual cortex (32). Clear staining for both K,4.2 and K,4.3 was observed in fluorescent dendrites (32). Immunoelectron microscopic studies reveal a high den-
neuron populations (32). Kv4 channels are also highly expressed in different interneuron populations (32). Kv4.3 is also found in granule cells and CA3 pyramidal neurons (205, 257). In interneurons, Kv4 channels are also highly expressed in cerebellum. Cerebellar granule cells express both Kv4.2 and Kv4.3 mRNA (290, 297) and protein (205, 257, 297, 314). In the cerebellar granule cell layer, reciprocal gradients of mRNA and protein expression are observed for Kv4.2 (anterior > posterior) versus Kv4.3 (posterior > anterior) (290, 314).

The expression and localization of Kv4-associated accessory cytoplasmic KChIP subunits has also been studied in some detail (205, 257). Specific KChIPs exhibit distinct patterns of localization, and of colocalization, with Kv4 α subunits. The circuitry of the hippocampus is again exemplary for these patterns. For example, in hippocampus, KChIP2, KChIP3, and KChIP4 exhibit precise colocalization with Kv4.2 and Kv4.3 in dendrites of dentate granule cells and CA3 pyramidal neurons (205, 257). Interestingly, in the dendrites of CA1 pyramidal cells, which lack Kv4.3, KChIP3 is also not expressed, such that CA1 dendrites express Kv4.2, KChIP2, and KChIP4 (205, 257). The distribution of KChIP1 in hippocampus is restricted to interneurons, where it is coexpressed and colocalized with Kv4.3 in the same subset of GABAergic cells. KChIP1 expression in neocortical and striatal interneurons also closely matches the cellular and subcellular distribution of Kv4.3 (257). These stereotypical Kv4-KChIP combinations (i.e., Kv4.2 with KChIP2 and KChIP4, and Kv4.3 with KChIP1) that are found in most brain regions are not present in cerebellum. KChIP1 is more highly expressed in granule cells in anterior cerebellar cortex, which also express high levels of Kv4.2, than in granule cells in posterior cerebellum, where higher levels of Kv4.3 are found (314). KChIP3 and KChIP4 are expressed somewhat uniformly in granule cells across the anterior-posterior gradient axis (314). In each case, the expression of KChIPs in cerebellar granule cells precisely colocalizes with that of Kv4 α subunits, in the somatic plasma membrane, and in the distinct glomerular synapses that form between granule cell dendrites and afferent inputs (205, 257, 314).

A recent immunohistochemical study of the expression of KChIPs in the Kv4.2 knockout mouse provided a dramatic example of the intimate relationship between Kv4 α subunit and KChIP auxiliary subunit expression (205). Remarkably, genetic ablation of Kv4.2 expression precisely altered the expression of the KChIPs that exhibited colocalization with Kv4.2, and did not affect other KChIPs or Kv4.3. For example, in hippocampus, KChIP2 staining was virtually eliminated in the dendrites of CA1 pyramidal neurons, which normally express only Kv4.2. However, in dendrites of CA3 pyramids and dentate granule cells, KChIP2 staining was reduced but still present, where it colocalizes with the persistent expression of Kv4.3 in these neurons. Similar effects were observed in cerebellum, where KChIP1 expression in the Kv4.2 knockout mouse was dramatically diminished in granule cells in the anterior cerebellar cortex, which would normally express high levels of Kv4.2, versus posterior, which express Kv4.3 (205). Overall, the impact of the elimination of Kv4.2 expression on KChIPs was stereotypical of the extent of their colocalization with Kv4.2, suggesting that the expression of these subunits is coregulated, by an as yet unknown mechanism, in multiple brain regions.

While not studied in detail, the cellular expression patterns of Kv4-associated DPP family auxiliary subunits also colocalize with those of Kv4 α subunits in mammalian brain neurons. The initial report that the DPPX isoform could be copurified with Kv4 channels from mammalian brain also provided examples of DPPX immunoreactivity precisely colocalizing with that of Kv4.2 in cerebellar granule cells, and specifically in somatic membranes and glomerular synapses (217). DPPX immunoreactivity in hippocampus did not provide compelling evidence for a similar colocalization with Kv4 α subunits (217). More recently, another member of the DPP family, DPP10 was found to exhibit auxiliary subunit effects on Kv4 channels in heterologous cells (140, 382). In situ hybridization analyses revealed distinct patterns of cellular expression, and overlap with that of Kv4 α subunits, for DPPX and DPP10 (382). DPPX expression was robust in the principal cells of the hippocampus, including dentate granule cells and CA1–CA3 pyramidal cells. In contrast, DPP10 was expressed at high levels in GABAergic interneurons. This indicates that DPPX may participate in heteromeric Kv4.2/Kv4.3 complexes (in dentate granule cells and CA3 pyramidal cell) and homomeric Kv4.2 complexes (in CA1 pyramids) while DPP10 is associated with homomeric Kv4.3 complexes in interneurons. Thus, as observed previously for KChIPs, specific DPP family auxiliary subunits have distinct patterns of coexpression (and presumably subcellular colocalization) with specific Kv4 α subunits in hippocampus. Other regions of brain also exhibit distinct patterns of DPPX and DPP10 mRNA expression (382). For example, as noted above, DPPX is highly expressed in cerebellar granule cells, which have low levels of DPP10 expression, while the converse is seen in cerebellar Purkinje cells, which have high levels of DPP10 (and Kv4.3) expression and low levels of DPPX (and Kv4.2). Together with the analyses of Kv4 α subunit and KChIP auxiliary subunit expres-
sion described above, a picture is emerging wherein different brain neurons express different combination of $K_v7.4$ subunit and KChIP and DPP auxiliary subunits to form dendritic A-type channels with distinct functional properties (139).

F. K_v7 Subfamily

Neuronal K_v7 or KCNQ channels are the principal subunits underlying the slowly activating and noninactivating M current that suppresses neuronal firing in many types of brain neurons (349), and suppression of M current by muscarinic modulation enhances neuronal excitability (69). Mutations in neuronal M channel principal KCNQ subunits lead to neurological diseases, the most prominent being epilepsy (60, 138). The major K_v7 KCNQ subunits expressed in mammalian brain are $K_v7.2$ (KCNQ2), $K_v7.3$ (KCNQ3), and $K_v7.5$ (KCNQ5). For simplicity and consistency with the remainder of this section, here we shall refer to these as K_v7 subunits, although the bulk of the literature employs the KCNQ system. $K_v7.2$, $K_v7.3$, and $K_v7.5$ mRNAs exhibit distinct patterns of cellular expression in mammalian brain. Initial in situ hybridization analyses revealed robust expression and extensive overlap of $K_v7.2$ and $K_v7.3$ mRNAs in principal cells of the hippocampus and neocortex (272, 286, 328). $K_v7.3$ has additional expression in amygdala and thalamus (272, 286). $K_v7.5$ mRNA is present at high levels in hippocampus, caudate putamen, and neocortex, especially in piriform and entorhinal cortex (285). In hippocampus, expression is especially high in CA3 pyramidal neurons relative to other principal cell types (285). Northern blot analyses of regional expression patterns in human brain yield similar results, with the exception that human cerebellum, in contrast to the situation in rat, expresses high levels of $K_v7.5$ mRNA (285).

Immunohistochemical localization of the cellular and subcellular localization of $K_v7.2$ and $K_v7.3$ subunits in brain has revealed a predominant axonal localization. Initial reports of staining in mouse (59) and rat (267) hippocampus revealed intense staining in mossy fiber axons and their terminals (Fig. 2D) and very little or no labeling in dentate granule cells themselves. Low levels of labeling were observed in somata of principal cells in CA3-CA1 in both mouse and rat, although moderate levels of staining in neuropil of s. oriens and s. radiatum in these regions was observed. A subpopulation of GABAergic interneurons in s. oriens of CA3 (Fig. 2D), and in s. oriens, s. pyramidalae, and s. radiatum of CA1 also exhibited robust immunoreactivity for $K_v7.2$ (59, 267), which in mouse comprised constituents of both parvalbumin-positive and -negative populations (59). In the mouse basal ganglia, strong somatic $K_v7.2$ staining was also observed in parvalbumin-positive neurons of the striatum, globus pallidus, and the reticular nucleus of the thalamus, dopaminergic neurons of the substantia nigra compacta and ventral tegmental area, and cholinergic neurons of the striatum and near the globus pallidus (59). In cerebellum, low levels of staining were present in granule cells, although intense labeling of a population of neurons scattered throughout the granule cell layer that presumably correspond to Golgi cells was observed (59). Staining was also seen in Purkinje cell bodies, and in the molecular layer of the cerebellar cortex, perhaps in Purkinje cell dendrites or granule cell axons (59). $K_v7.2$ is also present at axon initial segments of hippocampal CA3 and CA1 (Fig. 2E) pyramidal neurons and pyramidal neurons in cerebral cortex, and at nodes of Ranvier in spinal cord and optic nerve (71), in a pattern very similar to that of Na_v channels and ankyrin-G. The localization at axon initial segments of adult rat hippocampal CA1 pyramidal neurons has been observed in independent studies using independently generated antibodies (250).

Immunohistochemical localization of $K_v7.3$ reveals many similarities with $K_v7.2$, consistent with the model whereby native M channel complexes are heteromers of $K_v7.2$ and $K_v7.3$ subunits (349). Initial immunohistochemical studies of $K_v7.3$ localization in rat brain yielded labeling that was cellular/nuclear and mainly present in interneurons and astrocytes (267) and did not match the cellular expression patterns predicted from previous in situ hybridization studies (272, 286), in spite of the fact that a standard control of antibody specificity, the inclusion of immunizing peptide, eliminated all detectable staining. Subsequent reports using independently generated antibodies revealed $K_v7.3$ immunostaining at nodes of Ranvier (71, 229) and axon initial segments (71, 229, 250), consistent with localization of $K_v7.2$ at these sites.

The immunohistochemical analysis of the more recently identified $K_v7.5$ has only been performed in human brain (381). The immunostaining presented in neocortex and hippocampus was cellular in nature and closely matched the cytoarchitecture of the regions examined. This staining, while eliminated in the presence of excess immunizing peptide, did not match that observed for $K_v7.3$ in rodent, in spite of the fact that coimmunoprecipitation experiments revealed extensive interaction between $K_v7.3$ and $K_v7.5$ in rat brain (381). This suggests that either differences in localization of K_v7 subunits between species, or problems with tissue preservation and/or antibody specificity, confound comparisons of $K_v7.5$ localization in human brain. A recent study of $K_v7.5$ localization in rat auditory system presented clear immunostaining in presynaptic terminals of the auditory nerve (34). Additional staining was observed in dendrites (34). A more comprehensive view of $K_v7.5$ localization in mammalian brain awaits further study.
G. K5, K6, and K8-12 Subfamilies

The cellular and subcellular localization of members of K5, K6, and K8-12 is not as well characterized as that of the members of the K1-K4 and K7/KCNQ subfamily. For most of these K5 channel principal subunits, some information on expression in brain is available, mainly based on analyses of mRNA isolated from whole brain or from different brain regions, or in situ hybridization analyses of mRNA levels in brain sections. Immunohistochemical analyses of the subcellular localization of these subunit proteins have for the most part not been accomplished.

The single member of the K5 family, K5.1, was originally isolated from an adult rat brain cDNA library, and in situ hybridization analyses show strongest signals in neocortex, especially in deeper layers (80, 345). K6.1, the product of the KCNG1 gene, is highly expressed in brain (80, 345). K6.1 mRNA is found in each of the principal cell populations of the hippocampus, and in the granule and Purkinje cell layers in the cerebellum (80, 345). Expression in neocortex is in more superficial layers than K5.1 (80, 345). K6.2 has been detected in fetal rat (387) and human (371, 387) brain, as well as other tissues. K6.3 is prominently expressed in adult human brain. RT-PCR analyses showed expression in adult human brain (227), although note that in this report what is now termed K6.3 (107) is referred to as K10.1. A more detailed regional analysis of human brain K6.3 mRNA levels by RT-PCR (277) revealed prominent expression in all brain regions examined except cerebellum (277). K6.4 is also present in adult human brain (227), although note that in this report K6.4 is referred to as K6.3.

K8.1 was originally cloned from a hamster insulinoma cell line but is also expressed in hamster brain (125). In situ hybridization analyses of adult hamster brain reveal strong labeling of all principal cell populations of the hippocampus, of cerebellar granule and Purkinje cells, and throughout cerebral cortex (125). Similar findings for expression of K8.1 (termed K2.3rc in this report) were obtained from Northern blot and in situ hybridization analyses of rat brain (38). In a single study on K8.2 expression (although note that is termed K11.1 in this report), no detectable expression in adult human brain was found by RT-PCR (227). K8.2 is expressed in human retina, and specifically in photoreceptors, where mutations lead to life-long visual loss due to cone dystrophy with supernormal rod electroretinogram (367). K8.2 mRNA was also found in rat retina by RT-PCR analyses and in human and rat photoreceptors by in situ hybridization (64).

K9 family members K9.1 and K9.2 were originally cloned from adult mouse brain, where Northern blots revealed high levels of expression in mRNA from adult mouse brain and no detectable expression in any other adult mouse tissues examined (274). Similar brain-specific expression of K9.1 was seen in Northern blots of rat tissues (312). In situ hybridization of adult mouse brain revealed strikingly similar patterns of cellular expression for K9.1 and K9.2 (274). High levels of expression were observed in hippocampal dentate granule cells and in CA3-CA1 pyramidal neurons, as well as presumptive interneurons scattered through s. oriens and s. radiatum of CA3-CA1, and the hilar region of the dentate gyrus. In cerebellum, hybridization signal was observed in Purkinje cells, and in the granule cell layer, and in cerebral cortex intense signal was observed throughout all cortical layers (274). K9.3 was also found expressed in adult rat brain by RT-PCR analyses (234) and by Northern blot analyses (58, 234, 312), although expression was also observed in other adult rat tissues.

The original cloning of rat K10.1 revealed expression in brain by Northern blot analysis, and in situ hybridization showing strong labeling in cerebellar granule cells, in hippocampal dentate granule cells and CA3 but not CA1 pyramidal neurons, and in neocortex (182). Northern blot (183, 273) and RT-PCR (273) analyses of K10.2 mRNA levels showed expression in adult brain, with olfactory bulb and brain stem having much higher levels than forebrain and midbrain structures. Initial in situ hybridization analyses revealed strong and laminar expression in cerebr al cortex, in the granule cell layer of the olfactory bulb and olfactory cortex (273). More comprehensive in situ hybridization analyses of the two K10 or Eag family members in adult rat brain (272) revealed that K10.1 (Eag1) and K10.2 (Eag2) transcripts exhibit pronounced colocalization in specific neuronal populations, although in general the expression of K10.2 was more restricted such that many neurons express only K10.1. In neocortex, prominent coexpression of both K10 family members was observed in layers II–VI, with most robust expression of both transcripts in layer IV. Strong signal for K10.1 but not K10.2 was observed in each of the principal cell populations of the hippocampus, with more intense labeling of CA2 and CA3 pyramids than in CA1 and dentate gyrus, and no obvious labeling of interneurons. K10.1 signal in cerebellum was present in the granule cell layer, which lacked signal for K10.2.

Two independent in situ hybridization analyses of the three K11 (Erg) family members in adult rat brain revealed primarily consistent results (231, 272), although K11.2 signal was not observed in the initial study (272). The cellular patterns of expression suggested the possibility of different combinations of subunits in heteromeric channels, based on studies showing heteromeric K11 channel formation in heterologous cells coexpressing multiple K11 subunits (363, 364). K11.2 (Erg2) and K11.3 (Erg3) mRNAs exhibit precise cellular colocalization in adult rat hippocampus, with expression limited to principal cells in dentate gyrus and in pyramidal layers.
CA3-CA1, although Saganich et al. (272) observed principal cell labeling for K_v11.1 and K_v11.3 only in CA1 (Fig. 2F). In addition to labeling in principal cells, Erg1 also exhibits robust labeling of interneurons scattered in the hilar region of the dentate gyrus, and in s. oriens and s. radiatum of CA3-CA1 (Fig. 2F), some of which are also positive for parvalbumin. Labeling in s. pyramidale of CA3-CA1 was also more limited than observed for K_v11.2 and K_v11.3. Each of the Erg subunits displayed extensive expression in neocortex, with especially robust expression in layer V pyramidal neurons. In the striatum, K_v11.1 mRNA predominated, with strong in situ hybridization signals in lateral and mediodorsal compartments of the caudate putamen, where expression was found predominantly in interneurons (272). K_v11.1 also dominated in the thalamus, with strong signals in anterodorsal and anteromedial nuclei, especially in reticular thalamic nucleus. All three K_v11 family members were found expressed in cerebellar Purkinje neurons. K_v11.1 was also expressed in cerebellar granule cells, with an especially high signal in isolated neurons scattered throughout the granule cell layer, perhaps corresponding to Golgi cells.

Immunohistochemical analyses of the cellular and subcellular localization of K_v11.1 in adult rat brain yielded staining that was mostly cellular in nature (231). While all observed staining was eliminated by preincubation of antibody with immunizing peptide, in most cases the staining was intracellular, suggesting that the channel population relevant to control of neuronal membrane excitability was not the predominant target of the antibody. A number of consistent cellular targets of in situ hybridization signal (e.g., neocortical and hippocampal interneurons, cerebellar Purkinje neurons) also exhibited robust immunostaining.

In situ hybridization analyses (272) of K_v12 (Elk) subfamily members revealed little expression of K_v12.1 (Elk1) in adult rat brain. This was consistent with previous reports presenting either RNase protection assays that yielded positive signals for K_v12.1 in mRNA prepared from sympathetic ganglia but little detectable signal in that prepared from whole adult rat brain (300), and RT-PCR analyses showing low levels of K_v12.1 mRNA in adult brain, although levels were much higher in mRNA prepared from the brains of embryonic day 18 rats (86). K_v12.2 (Elk2) and K_v12.3 (Elk3) mRNAs were found robustly expressed in adult rat brain in both studies (86, 300), as well as in a later study reporting independent isolation of K_v12.2 (Bec1) and K_v12.3 (Bec2) cDNAs from rat and human brain (210). Note that in the study of Engeland et al. (86), what was later named K_v12.3 was referred to as Elk1, and K_v12.1 as Elk3. In situ hybridization analyses revealed expression of K_v12.2 in cerebellum in granule cells but not Purkinje cells, whereas detectable K_v12.3 signal was not found in cerebellum (272). K_v12.3 was expressed at high levels in the caudate putamen, consistent with earlier studies of regional expression (86). Most cells in caudate exhibited K_v12.3 hybridization signal, suggesting expression in principal cells (272). In neocortex, upper layers (II–III) had highest levels of both K_v12.2 and K_v12.3 mRNA. In hippocampus, hybridization signal for both K_v12.2 and K_v12.3 was prominent in CA1 pyramidal neurons and dentate granule neurons. Similar regional expression of K_v12.2 and K_v12.3 was found in human brain in studies using Northern blots (210) and quantitative RT-PCR (389).

III. VOLTAGE-DEPENDENT SODIUM CHANNEL LOCALIZATION IN MAMMALIAN BRAIN

A. Overview of Mammalian Brain Voltage-Dependent Sodium Channels

The molecular characterization of Na_v channels, and in fact of all VDICs, began with the cloning of a cDNA encoding the electric eel electroplax Na_v channel α subunit (220). The α subunit of the electroplax Na_v channel was the first subunit of a VDIC to be cloned, and early analyses of the deduced amino acid sequence led to a number of important insights into how ion channel primary structure might relate to function. Moreover, this eel Na_v channel cDNA was used to isolate, in rapid successions, cDNAs encoding three distinct rat brain Na_v channel α subunits (218). The nine mammalian Na_v channel isoforms that have been identified and functionally expressed exhibit >75% pairwise amino acid identity in the transmembrane and extracellular domains. These will be referred to using the established nomenclature (42) that consists of the prefix Na_v to indicate the principal permeating ion and the principal physiological regulator, followed by a number that indicates the gene subfamily. Currently Na_v1 is the only subfamily within the Na_v family (Fig. 3). The number following the decimal point identifies the specific channel isoform (e.g., Na_v1.1) and generally reflects the order in which the subunit was cloned (42). A 10th isoform exists, termed Nax, that exhibits ~50% sequence identity to mammalian Na_v channel α subunits (42). Because the Na_v α subunits have not been functionally expressed, it is possible that this gene does not encode a functional Na_v α subunit, although genetic ablation yields altered sodium homeostasis in neurons (120). Representatives of all nine isoforms and Nax have been identified and characterized in human, mouse, and rat, and representatives of some isoforms in other species.

Na_v channels (Fig. 3) consist of a highly posttranslationally modified α subunit, which is ~260 kDa, associated with smaller auxiliary Na_vβ subunits (39). Na_v channels in the adult central nervous system and heart contain Na_vβ1-Na_vβ4 subunits, whereas Na_v channels in adult...
skeletal muscle have only the Na\textsubscript{v1.1} subunit (130). The pore-forming α subunit is sufficient for functional expression (219, 334), but the kinetics and voltage dependence of channel gating are modified by Na\textsubscript{v} subunits (130). Na\textsubscript{v} subunits are also involved in channel localization and interaction with cell adhesion molecules, extracellular matrix, and intracellular cytoskeleton (130–132). Na\textsubscript{v} subunits are organized in four internally repeated homologous domains (I–IV), each of which contains six transmembrane segments (S1–S6) and an additional pore loop located between the S5 and S6 segments (Fig. 3). The pore loops line the outer, narrow entry to the pore, whereas the S5 and S6 segments line the inner, wider exit from the pore. The S4 segments in each domain contain positively charged amino acid residues at every third position. These residues serve as gating charges and move across the membrane to initiate channel activation in response to depolarization of the membrane. The short intracellular loop connecting homologous domains III and IV serves as the inactivation gate, folding into the channel structure and blocking the pore from the inside during sustained depolarization of the membrane (39).

At least 9 of the 10 Na\textsubscript{v1} channel α-subunit genes present in the mammalian genome are expressed in the nervous system, the exception being the muscle-specific Na\textsubscript{v1.4} (334). When expressed in heterologous systems, Na\textsubscript{v1} α subunits generate Na\textsubscript{v} currents whose functional properties are highly conserved (97), compared with the heterogeneity of function observed among the different Ca\textsubscript{v} and K\textsubscript{v} family members. Certain subtypes, such as Na\textsubscript{v1.7}, Na\textsubscript{v1.8}, Na\textsubscript{v1.9}, and Nax, are expressed predominantly in the peripheral nervous system and will not be discussed here. Na\textsubscript{v1.4} is the predominant Na\textsubscript{v} channel in adult skeletal muscle and Na\textsubscript{v1.5} in adult cardiac and embryonic skeletal muscle. The remaining four α subunits (Na\textsubscript{v1.1}, Na\textsubscript{v1.2}, Na\textsubscript{v1.3}, and Na\textsubscript{v1.6}) are expressed at high levels in brain, although in rodents Na\textsubscript{v1.3} is predominantly found in embryonic and neonatal, but not adult brain (16). In addition, Na\textsubscript{v1} channels are found in both neurons and glia. A number of groups have used antibodies raised against subtype-specific sequences in the intracellular inter-domain I–II linker region or the cytoplasmic COOH terminus to define the localization of Na\textsubscript{v1.1}, Na\textsubscript{v1.2}, Na\textsubscript{v1.3}, and Na\textsubscript{v1.6} in rat, mouse, and human brain.

Na\textsubscript{v1} channels initiate and propagate action potentials in virtually all mammalian central neurons. The different subtypes exhibit different subcellular localization, as detailed below. Na\textsubscript{v1.1} and Na\textsubscript{v1.3} are predominantly localized to the neuronal soma and to proximal dendrites, where they control neuronal excitability through integration of synaptic impulses to set the threshold for action

Fig. 3. Subunit composition and subcellular localization of Na\textsubscript{v} channel principal and auxiliary subunits in mammalian central neurons. Schematic representation of a single Na\textsubscript{v} α subunit that forms macromolecular complexes with auxiliary Na\textsubscript{v} β subunits. **Bottom left box:** classification, genetic nomenclature, and subcellular localization of mammalian brain Na\textsubscript{v} channel principal α subunits. **Bottom right box:** classification of Na\textsubscript{v} β auxiliary subunits expressed in mammalian central neurons and their functional effects on coexpressed Na\textsubscript{v} α subunits.

<table>
<thead>
<tr>
<th>Principal Subunits</th>
<th>Gene</th>
<th>Subcellular Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na\textsubscript{v1.1}</td>
<td>SCN1A</td>
<td>soma, dendrites, some axon</td>
</tr>
<tr>
<td>Na\textsubscript{v1.2}</td>
<td>SCN2A</td>
<td>axon</td>
</tr>
<tr>
<td>Na\textsubscript{v1.3}</td>
<td>SCN3A</td>
<td>soma, dendrites</td>
</tr>
<tr>
<td>Na\textsubscript{v1.4}</td>
<td>SCN8A</td>
<td>axon, some somatodendritic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary Subunits</th>
<th>Name</th>
<th>Effects on α function</th>
</tr>
</thead>
<tbody>
<tr>
<td>β\textsubscript{1}</td>
<td>trafficking, gating</td>
<td></td>
</tr>
<tr>
<td>β\textsubscript{2}</td>
<td>gating</td>
<td></td>
</tr>
<tr>
<td>β\textsubscript{3}</td>
<td>trafficking, gating</td>
<td></td>
</tr>
<tr>
<td>β\textsubscript{4}</td>
<td>gating</td>
<td></td>
</tr>
</tbody>
</table>
potential initiation and propagation to the dendritic and axonal compartments. Nav1.2 is predominantly expressed in unmyelinated axons, where it conducts action potentials. Nav1.6 is prominently found at nodes of Ranvier, the gaps in the myelin sheaths of myelinated axons, where it propagates action potentials, and at axon initial segments where action potentials initiate. Modulation of Na\(_v\) currents is undoubtedly important in vivo (37), and mutations that subtly alter Na\(_v\) channel function can lead to human diseases of hyperexcitability such as epilepsy (161).

B. Na\(_v\)1 Subfamily

The availability of Na\(_v\)1 \(\alpha\)-subunit cDNAs allowed for the generation of subtype-specific molecular probes and led to the first studies of the regional and developmental patterns of Na\(_v\)1 gene expression in mammalian brain (15, 16, 19, 31). The subsequent generation of isoform-specific antibodies allowed for initial analyses of the cellular and subcellular distribution of the corresponding Na\(_v\)1 \(\alpha\) subunits in rat brain (33, 100, 357). These studies and many that followed are especially relevant for understanding how each isoform contributes to cellular excitability.

1. Na\(_v\)1.1

Initial studies of Na\(_v\)1.1 mRNA distribution in rat brain showed high expression in cerebellum; lower levels in the striatum, hippocampus, and thalamus; and no detectable signal in cortex (19, 31). Immunostaining revealed Na\(_v\)1.1 polypeptide predominantly in the cell bodies and dendrites of expressing cells (100, 357). In the adult rat (Fig. 4A) and human hippocampus, strong Na\(_v\)1.1 staining was present on the soma of dentate granule cells, and of interneurons dispersed throughout the dentate hilus (100, 357). Intense staining was also seen in s. py-
ramidale of all hippocampal subfields (CA1, CA2, and CA3) with staining restricted to the pyramidal cell somata and proximal dendrites (Fig. 4A). Recently, an Na\(_{1.1}\)-dense subregion was observed within the axon initial segment of a subset of initial segments adjacent to or within the pyramidal cell layer of hippocampal area CA3 (342). Na\(_{1.1}\) was located at the proximal end of the axon initial segment, nearest to the soma, in this subset of CA3 neurons. Additional Na\(_{1.1}\) staining was also observed in a subpopulation of interneurons dispersed throughout s. radiatum and s. oriens (Fig. 4A). The identity of this subpopulation of interneurons has not been experimentally determined. Robust Na\(_{1.1}\) staining was also observed on the soma and apical dendrites of pyramidal cells in layer V of the cerebral cortex. Studies of Na\(_{1.1}\) expression in the cerebellum are quite inconsistent. Some studies showed low-level expression of Na\(_{1.1}\) in granule cells (56, 343), while in other studies no Na\(_{1.1}\) expression was detected (89, 225). However, cerebellar Purkinje cells have strong somatic Na\(_{1.1}\) staining, and clear staining is also seen on Purkinje cell dendrites. It should be noted that strikingly similar patterns of Na\(_{1.1}\) staining were observed in human brain (361), suggesting that this distinct pattern of localization is evolutionarily conserved and that somatodendritic targeting of Na\(_{1.1}\) is essential for normal neuronal function across species. Na\(_{1.1}\) channels are presumably involved in propagating synaptic signals from dendrites to soma, and in integration of electrical signals within the soma prior to the initiation of axonal action potentials.

2. Na\(_{1.2}\)

While Na\(_{1.2}\) mRNA has a somewhat similar pattern of cellular expression to that observed for Na\(_{1.1}\) (31), the Na\(_{1.2}\) polypeptide was found specifically localized in axons and terminals (100, 357). These early studies revealed that the highly related rat brain Na\(_{1.1}\) and Na\(_{1.2}\) polypeptides (~88% amino acid identity) could be targeted to distinct subcellular domains (somatodendritic versus axonal) in rat central neurons. This localization also suggested that in central neurons, Na\(_{1.2}\) is a major component of the axonal action potential conductance mechanism, as well as a regulator of neurotransmitter release in presynaptic terminals.

High levels of Na\(_{1.1}\) and Na\(_{1.2}\) mRNA are expressed in many of the same cells. However, the subcellular staining pattern of Na\(_{1.2}\) is in many instances a reciprocal image of that for Na\(_{1.1}\). The contrasting subcellular localizations of Na\(_{1.1}\) and Na\(_{1.2}\) are especially clear in the hippocampus (Fig. 4), where the exquisite laminar cytoarchitecture lends itself to such comparisons. In many cells expressing robust somatodendritic Na\(_{1.1}\) staining (Fig. 4A), very little if any Na\(_{1.2}\) staining is observed on the somatic or dendritic membrane (Fig. 4B).

Thus the principal cell layers of the hippocampus are virtually lacking Na\(_{1.2}\) staining, while areas rich in axons and nerve terminals exhibit robust staining. In the dentate gyrus, Na\(_{1.2}\) is present at high levels in the middle third of the molecular layer, site of termination efferents from the entorhinal cortex to the hippocampus (the so-called medial perforant path), and absent from dentate granule cell bodies (Fig. 4B). Additional strong staining is seen in s. lucidum of CA3, the site of densely packed mossy fiber axons of dentate granule cells, while CA3 pyramidal cell bodies are not stained (Fig. 4B). Na\(_{1.2}\) is also concentrated in s. radiatum and s. oriens of CA1 and appears to be associated with axons and terminals of the Schaffer collaterals (s. radiatum), and the commissural/association pathway (s. oriens). As in other pyramidal cell layers, Na\(_{1.2}\) is not present on CA1 pyramidal cell bodies.

In general, the staining pattern of Na\(_{1.2}\) (200, 297) is quite similar to that of K\(_{1.4}\) (compare Fig. 2A and Fig. 4B), for which experimental lesions (212) and immunoelectron microscopy (61) studies have strongly supported an axonal localization. However, neither lesion studies nor immunoelectron microscopy have been utilized to verify that the Na\(_{1.2}\) staining is in fact localized to axons and terminals. It should be noted that in the large pyramidal cells of hippocampal CA1, and of layer V of the neocortex, some apical dendritic Na\(_{1.2}\) staining is apparent (100). However, this staining appears to be intracellular and presumably represents a pool of newly synthesized Na\(_{1.2}\) α subunits transiting through the rough endoplasmic reticulum and/or Golgi apparatus prior to subsequent trafficking to axons.

Similar contrasting localization of Na\(_{1.1}\) and Na\(_{1.2}\) is observed in the cerebellar cortex, where strong Na\(_{1.1}\) staining is seen in Purkinje cells and strong Na\(_{1.2}\) staining is seen on the axons of the granule cells and interneurons of the molecular layer (100, 357). There are conflicting reports concerning Na\(_{1.2}\) expression in Purkinje cells. Some in situ hybridization studies detect Na\(_{1.2}\) mRNA (19, 89), but other in situ hybridization and immunolocalization studies fail to detect this isoform (31, 134, 282). One interesting finding of a recent study is the graduated intensity of Na\(_{1.2}\) staining in the cerebellum, with the highest intensity found in the posterior lobes and much lower intensity in the anterior lobes (134), similar to the gradient of K\(_{4}\) channels detailed above.

3. Na\(_{1.3}\) and Na\(_{1.5}\)

In contrast to Na\(_{1.1}\) and Na\(_{1.2}\) transcripts, in rodents Na\(_{1.3}\) mRNA was found at highest levels in embryonic and early postnatal brain. A detailed immunochemical study of Na\(_{1.3}\) localization in brain has not been performed in the rat (although see Ref. 358). However, recent studies of Na\(_{1.3}\) mRNA (300) and protein (361) in human brain have revealed that the distribution
of Na\textsubscript{1,3} in adult human brain is quite extensive. Certain human brain regions express moderate to high levels of Na\textsubscript{1,3} staining, which in all cases, as in the rat (358), is associated with neuronal somata and dendrites. Especially notable is staining in neocortex, where robust staining of layer III pyramidal cells is apparent (361). This strong staining extends some distance along the large apical dendrites along these layer III pyramidal cells, while in other neocortical laminae staining is less intense and restricted to somata. In rat, both layer III and layer V pyramidal cells exhibit strong Na\textsubscript{1,3} staining extending along the length of the apical dendrites (358). In the human hippocampus, robust staining is observed in a subpopulation of interneurons scattered throughout s. oriens of CA1 and CA2, s. lucidum of CA3, and the polymorphic layer of the dentate gyrus. Less intense somatodendritic staining is also observed in pyramidal cells, but little or no staining is seen in dentate granule cells. In cerebellar cortex, moderate staining is observed in granule cells and in the molecular layer. Thus, in human brain, Na\textsubscript{1,3} may act together with Na\textsubscript{1,1} in determining the active properties of neuronal somata and dendrites. Moreover, a recent study showed upregulation and misexpression of the Na\textsubscript{1,3} sodium channel in neurons of the ventral posterolateral nucleus of the thalamus after a peripheral nerve injury (385). These data document abnormal expression and subcellular distribution that bias neurons toward hyperexcitability and epileptogenesis (204, 370). All four Na\textsubscript{1,1}, Na\textsubscript{1,2}, Na\textsubscript{1,6}, and Na\textsubscript{1,7} subunits are expressed in mammalian brain. In mouse brain, Na\textsubscript{1,5} is localized to axons (368).

4. Na\textsubscript{1,6}

The cDNA encoding Na\textsubscript{1,6} was originally isolated from rat brain (284), and Na\textsubscript{1,6} mRNA is highly expressed in cerebellar granule cells and in pyramidal and granule cells of the hippocampus (282). In many central neurons, immunoreactivity for Na\textsubscript{1,6} is found in the soma and proximal dendrites of cells expressing the corresponding mRNA (33, 162). In adult neurons with myelinated axons, Na\textsubscript{1,6} is robustly expressed at high densities at nodes of Ranvier (24, 33), and axon initial segments (25), where Na\textsubscript{1,6} channels are clustered at high densities (Fig. 4, C and E). When nodes of Ranvier initially form in response to developmental myelination, Na\textsubscript{1,2} channels are found in high densities at most if not all nodes, and Na\textsubscript{1,6} is not found (24). However, with further maturation of the node, Na\textsubscript{1,6} becomes the predominant Na\textsubscript{i} isoform such that Na\textsubscript{1,2} is seen in only a small subpopulation of nodes, where it is always found in conjunction with Na\textsubscript{1,6}. In neurons such as retinal ganglion cells, where the myelinated portion of the axon within the optic nerve lies distal to extensive nonmyelinated portions within the retina, it is clear that Na\textsubscript{1,2} is highly expressed in the nonmyelinated portions in the absence of Na\textsubscript{1,6} (24). However, in the axon initial segment, Na\textsubscript{1,6} is again found at high levels in conjunction with Na\textsubscript{1,1} and Na\textsubscript{1,2} (25). These findings point to the fact that a number of distinct membrane domains can exist along the length of mammalian axons. Some of these domains are defined by highly specific cell-cell interactions, such as that which occurs between neurons and glia at the node of Ranvier of myelinated axons (as discussed below). However, intrinsic neuronal machinery must also exist to restrict the expression of Na\textsubscript{i} isoforms to different locations in the nonmyelinated portions of axons, such as axon initial segments.

Na\textsubscript{1,6} is also robustly expressed in Purkinje cells, where it is present in the soma and throughout the dendritic arbor in rat (162) and human (361). This robust Purkinje cell staining is consistent with the finding that mutant mice lacking Na\textsubscript{1,6} expression are missing a Purkinje cell resurgent Na\textsubscript{i} current (242). In situ hybridization and immunolocalization studies demonstrated that Na\textsubscript{1,6} is more highly expressed in the granule cells of lobules posterior to the boundary at lobules V and VI (282, 283), similar to Na\textsubscript{1,2} and K\textsubscript{4} channels. Other somatodendritic Na\textsubscript{1,6} staining is less impressive, with neurons in many brain regions, such as cortex and hippocampus, exhibiting somatodendritic staining that is somewhat intracellular in appearance (33, 162). This may simply represent newly synthesized Na\textsubscript{1,6} prior to its targeting to initial segments and/or nodes of Ranvier of myelinated axons, as opposed to a functional somatodendritic pool of Na\textsubscript{1,6}.

C. Na\textsubscript{1,β} Auxiliary Subunits

Unlike the K\textsubscript{β} and Ca\textsubscript{β} auxiliary subunits, the Na\textsubscript{1,β} subunits are transmembrane glycoproteins. Like other VDCC auxiliary subunits, Na\textsubscript{1,β} subunits are multifunctional. They modulate channel gating and regulate the level of channel expression in the plasma membrane (130, 131, 241), and saxitoxin binding studies show that Na\textsubscript{1,β1} mediates a fourfold increase in surface expression of coexpressed Na\textsubscript{1,2} channels (132). More recently, Na\textsubscript{1,β} subunits have been shown to function as cell adhesion molecules that mediate interaction with extracellular matrix, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton (200, 311). Moreover, mutations in Na\textsubscript{1,β} subunit cause effects on channel function and subcellular distribution that bias neurons toward hyperexcitability and epileptogenesis (204, 370). All four Na\textsubscript{1,β} subunits, Na\textsubscript{1,β1}, Na\textsubscript{1,β2}, Na\textsubscript{1,β3}, and Na\textsubscript{1,β4}, are ex-
pressed in brain (36, 171, 223, 292, 375). However, \(\text{Nav}_{\beta3}\) is expressed primarily in embryonic brain, with mRNA levels decreasing around postnatal day 3, except in the hippocampus and striatum (292). \(\text{Nav}_{\beta3}\) mRNA is highly expressed throughout the prenatal brain with a hybridization signal temporally similar to that of both \(\text{Nav}_{1.1}\) and \(\text{Nav}_{1.3}\) subunits. It is possible that \(\text{Nav}_{\beta3}\) may couple with \(\text{Nav}_{1.2}\) and/or \(\text{Nav}_{1.3}\) subunits during development to form a functional \(\text{Nav}\) channel complex. In contrast, \(\text{Nav}_{\beta1}\) and \(\text{Nav}_{\beta2}\), while expressed in embryonic brain, only reach maximum expression levels at postnatal day 21, and expression remains elevated in adults (292). In the postnatal brain, \(\text{Nav}_{\beta1}\) and \(\text{Nav}_{\beta2}\) mRNA show some synchrony in their regional and temporal expression in cortex, hippocampus and cerebellum (292). \(\text{Nav}_{\beta1}\) mRNA first appears around P3 (280), with expression increasing rapidly in most brain areas to reach a maximum by P14. \(\text{Nav}_{\beta2}\) mRNA expression was also found to increase throughout the CNS between P3. The analyses of \(\text{Nav}_\beta\) association during development, by immunoblot under nonreducing conditions, show that the association of both \(\text{Nav}_{1.1}\) and \(\text{Nav}_{1.2}\) with \(\text{Nav}_{\beta}\) changes during the development of the brain (100). \(\text{Nav}_{\beta3}\) mRNA is expressed at very high levels throughout the CNS at P1 with levels decreasing in most areas after this stage (292). \(\text{Nav}_{\beta3}\) mRNA has a complementary distribution with \(\text{Nav}_{\beta1}\) after P9, with distinct differences appearing by adulthood (213, 292). The subcellular distribution of these \(\text{Nav}_{\beta}\) subunits has not been extensively characterized.

\(\text{Nav}_{\beta4}\) mRNA is expressed in a restricted pattern throughout the cerebral cortex and present at high levels in cerebellar Purkinje cells. In the hippocampal region, \(\text{Nav}_{\beta4}\) is expressed at very low levels (375). In general, \(\text{Nav}_{\beta4}\) protein expression was in accordance with the in situ hybridization data. Both \(\text{Nav}_{\beta2}\) and \(\text{Nav}_{\beta4}\) are coexpressed in many areas of the brain, but \(\text{Nav}_{\beta2}\) exhibited a more widespread distribution. For example, in the hippocampus, \(\text{Nav}_{\beta4}\) protein is found in isolated pyramidal neurons but is absent from the dentate gyrus apart from occasional hilar neurons. In contrast, \(\text{Nav}_{\beta2}\) protein is highly expressed in hippocampal pyramid cells and in the hilus and granule cells of the dentate gyrus (251). This complementary distribution may indicate selective association with distinct \(\text{Nav}_{1}\) \(\alpha\) subunits in those regions that may differentially influence \(\text{Nav}\) channel properties or dictate differences in protein-protein interactions.

IV. VOLTAGE-DEPENDENT CALCIUM CHANNEL LOCALIZATION IN MAMMALIAN BRAIN

A. Overview of Voltage-Dependent Calcium Channels

\(\text{Ca}_v\) channels mediate calcium influx in neuronal cells in response to membrane depolarization. Calcium entry through \(\text{Ca}_v\) channels mediates a wide range of intracellular processes such as activation of calcium-dependent enzymes, gene transcription, and neurotransmitter exocytosis/seclection (41). Their activity is an essential requirement for the coupling of electric signals in the neuronal plasma membrane to physiological events within the cells. Biochemical characterization of native brain \(\text{Ca}_v\) channels revealed that, in addition to the large principal \(\alpha_1\) subunit, there exist numerous auxiliary subunits (Fig. 5), each encoded by multiple genes (41). The \(\alpha_1\) subunit is the largest and principal subunit and incorporates the ion conduction pore, the membrane voltage-sensor, and gating apparatus. A number of different \(\alpha_1\) subunits have been identified and characterized in the mammalian nervous system (Fig. 5), each with specific physiological functions and electrophysiological and pharmacological properties (41). These are classified into three families: the \(\text{Ca}_v1\) (L-type), \(\text{Ca}_v2\) (P/Q-, N-, and R-type), and \(\text{Ca}_v3\) (T-type) family (43). These principal \(\alpha_1\) subunits, like the \(\alpha\) subunits of \(\text{Nav}\) channels, consist of four internally repeated homologous domains (I–IV), each with six transmembrane segments (S1–S6), wherein each S4 segment serves as the voltage sensor (Fig. 5). In addition to these principal pore-forming \(\alpha_1\) subunits, native functional \(\text{Ca}_v\) channels consist of auxiliary \(\alpha_2\delta\), \(\beta\), and \(\gamma\) subunits (Fig. 5), with the exemplary subunit composition of many native \(\text{Ca}_v\) channels being \(\alpha_1\alpha_2\delta\beta\gamma\) in a 1:1:1:1 ratio (43).

Diversity among these \(\text{Ca}_v\) auxiliary subunits leads to a variety of isoform-specific effects that are crucial in determining the expression level, localization, and function of the associated \(\text{Ca}_v\) \(\alpha_1\) subunits (121). These different \(\text{Ca}_v\) channel subunits have distinct cellular and subcellular distributions in the mammalian brain, supporting their individual physiological roles (335).

B. \(\text{Ca}_v1\) Subfamily

The \(\text{Ca}_v1\) family or L-type \(\text{Ca}_v\) channels play a critical role in somatodendritic calcium influx in many mammalian central neurons (43). \(\text{Ca}_v1\) channels are involved in dendritic calcium signaling resulting from back-propagating action potentials, synaptic plasticity, and excitatory activity-dependent modulation of gene transcription in mammalian brain neurons (142). Among the four \(\text{Ca}_v1\) family members, only \(\text{Ca}_v1.2\) (\(\alpha_{1C}\)) and \(\text{Ca}_v1.3\) (\(\alpha_{1D}\)) are expressed in mammalian central neurons. These underlie prominent somatodendritic high-voltage-activated L-type \(\text{Ca}_v\) currents, as determined by specific pharmacological inhibition of channel currents by dihydropyridine inhibitors (305, 335). In situ hybridization studies in rat brain first suggested the expression of \(\text{Ca}_v1.2\) mRNA in olfactory bulb, hippocampus, cerebellum, and amygdala; \(\text{Ca}_v1.3\) mRNA was also detected here as well as in cortex and habenula (181). Immunolocalization studies on brain
L-type Ca\textsubscript{v}1 channels suggested the expression of Ca\textsubscript{v}1.2 and Ca\textsubscript{v}1.3 in the cortex, cerebellum, and hippocampus, with distinct subcellular localization in the neuronal soma and proximal dendrites (2, 116, 355). In the cerebellum, initial studies with an \textit{H}9251\textsubscript{2}-specific monoclonal antibody, aimed at defining expression of all \textit{H}9251\textsubscript{2}-containing Ca\textsubscript{v}1 channels, showed expression and somatodendritic localization of L-type channels in the Purkinje cells and neurons in the granular and molecular layers (355). In the hippocampus, Cav1 channels were found expressed and localized in the soma and proximal dendrites of pyramidal neurons in CA1-CA3 region, granule cells in the dentate gyrus, neurons in the subiculum and entorhinal cortex, and interneurons scattered throughout these region (85, 116, 355).

Subsequent Ca\textsubscript{v}1 isoform-specific antibody staining suggested that Ca\textsubscript{v}1.2 and Ca\textsubscript{v}1.3 \textalpha\textsubscript{1} subunits have distinct subcellular localizations in the soma and dendrites of principal cells in the hippocampus (85, 116). Specific immunoreactivities of Ca\textsubscript{v}1.2 and Ca\textsubscript{v}1.3 were found to make up \textless{}75 and \textless{}20\% of the total dihydropyridine binding activity in rat brain membranes, respectively. Ca\textsubscript{v}1.2 staining was consistently found associated with the soma and proximal dendrites, with a clustered localization pattern, in hippocampal pyramidal cells, cerebral cortical neurons, and cerebellar neurons (116), and closely resembled the staining pattern previously obtained with the \textit{H}9251\textsubscript{2}-specific monoclonal antibody. These observations suggest that Ca\textsubscript{v}1.2 is the major constituent of the brain L-type Ca\textsubscript{v}1 channel population, whose clustering may be critical to proximal dendritic calcium entry in response to synaptic activity (85, 189). Ca\textsubscript{v}1.2 is also found on distal dendrites, especially in the molecular layer of the dentate gyrus and CA3/CA2 s. radiatum (116). These clusters are shown localizing at or near axosomatic and axodendritic postsynaptic regions and are often associated with \beta\textsubscript{2}-adrenergic recep-

![Diagram of neuron with ion channels](http://physrev.physiology.org/)
tor signaling complexes (66). Subsequent immunolocalization studies on both endogenous and exogenous Ca_{1.2} in cultured mouse hippocampal neurons indicated plasma membrane expression of these channels in small clusters in the soma and apical dendrites with some expression in the axon initial segments (221). Higher resolution microscopic analyses revealed that these channel clusters are localized in both extrasynaptic as well as synaptic regions in the dendrites, the latter associated with glutamatergic synapses in dendritic spines (221). A recent ultrastructural study in hippocampus provided evidence for Ca_{1.2} localization on both dendrites and axon terminals in all hippocampal subfields (329).

Ca_{1.3} exhibited a staining pattern similar to Ca_{1.2} (Fig. 6, D–F) and was found mainly in the soma and proximal dendrites but without the clustering seen for Ca_{1.2} (116). A more recent report on exogenous Ca_{1.2} and Ca_{1.3} channels in cultured rat hippocampal neurons revealed subtype-specific localization patterns, with Ca_{1.3} surface clusters less abundant, but larger in size and brighter than Ca_{1.2} clusters (383). Most of the Ca_{1.2} clusters (~80%) are located at/near synapses at the postsynaptic region, as opposed to Ca_{1.3} clusters, which are less abundant in these regions. However, coexpression of the postsynaptic adapter protein, Shank-1B promoted synaptic localization of dendritic Ca_{1.3} clusters (383). In developing neurons, Ca_{1.2} is robustly expressed in the growth cone, but upon neuronal maturation are excluded from the distal axons and nerve terminals, suggesting that the specific targeting machinery in different neuronal compartments changes during differentiation (221).

C. Ca_{2} Subfamily

The Ca_{2} family of P/Q-, N- and R-type Ca_{x} channels plays critical roles in somatodendritic calcium influx and regulates neurotransmitter release from presynaptic terminals in many mammalian central neurons. All three types of Ca_{2} \alpha_{1} subunits (Fig. 5), the P/Q-type or Ca_{2.1} (\alpha_{1A}), the N-type or Ca_{2.2} (\alpha_{1B}), and the Ca_{2.3} (\alpha_{1C}) are expressed in mammalian central neurons, as determined by specific pharmacological inhibition of these isoform-specific Ca_{x} currents by the funnel web spider toxin omega-agatoxin-IVA, the cone snail toxin omega-GVIA-conotoxin, and the tarantula toxin SNX-482, respectively. Pharmacological studies using these toxins suggested that Ca_{2.1} and Ca_{2.2} channels constitute most of the presynaptic voltage-dependent calcium influx, which triggers neurotransmitter release from nerve terminals. In contrast to specific subcellular localization of Ca_{1} channels in the soma and dendrites, Ca_{2} family channels have both axonal as well as somatodendritic localization in mammalian brain neurons.

![Fig. 6. Cellular and subcellular distribution of Ca_{x} channels in adult rat brain. A–F: immunoperoxidase staining. G–K: immunofluorescence staining. A, D–F: hippocampus. B, C, K: neocortex. A: Ca_{2.1}. Note staining in terminal fields of the medial perforant path in the middle molecular layer of the dentate gyrus and mossy fiber axons and terminals in s. lucidum of CA3. B: higher magnification view of Ca_{2.1} staining in CA1. C: higher magnification view of Ca_{2.1} staining in CA3; arrows indicate mossy fiber terminals and arrowheads CA3 pyramidal cell somata. D: Ca_{1.3}. Note staining in somata and proximal dendrites of dentate granule cells, CA3-CA1 pyramidal cells, and interneurons. E: higher magnification view of Ca_{1.3} staining in CA3-CA2. F: much higher magnification view of Ca_{1.3} staining in CA3-CA2. Arrows, base of apical dendrites; arrowheads, proximal dendrites. G–I: Ca_{3.1} (G), Ca_{3.2} (H), and Ca_{3.3} (I) staining in CA1. J: Ca_{3.3} staining in subiculum. K: Ca_{3.3} staining in neocortex. SP, s. pyramidale; SR, s. radiatum. [A–C] from Westenbroek et al. (359), copyright 1995 by the Society of Neuroscience; D–F] from Hell et al. (116), copyright 1993 the Rockefeller University Press; G–I from McKay et al. (201), copyright 2006 Wiley-Blackwell.]
adult rat brain with a Ca$_{2.1}$-specific antibody (Fig. 6, A–C) revealed specific staining in the hippocampus, brain stem, habenula, frontal cortex, substantia nigra, molecular layer of cerebellar cortex, Purkinje cell dendrites, periglomerular cell soma and dendrites in the olfactory bulb, and deep layers of entorhinal cortex, neocortex, and striatum (119). Subsequently, immunolocalization studies in rat brain using another Ca$_{2.1}$ isoform-specific antibody suggested expression of these channels in the synaptic terminals of cerebellar molecular layer and the mossy fiber zone of hippocampal CA3 (178, 253, 359). This presynaptic localization of Ca$_{2.1}$ channels is consistent with the role of P/Q-type channels in the regulation of neurotransmitter release through interaction with release machinery (44, 255). However, in cerebellar Purkinje cells, prominent somatodendritic staining of Ca$_{2.1}$ was also observed (178, 253, 337, 359), where staining colocalizes with that of metabotropic glutamate receptor subtype 1 receptor through a direct physical interaction (157). Immunoelectron microscopic analysis in globus pallidus neurons also suggested that in addition to prominent presynaptic expression, the Ca$_{2.1}$ channels are also localized in dendrites (111). Subsequently, several reports have shown dendritic localization of Ca$_{2.1}$ channels, which are subjected to neurotransmitter regulation (85, 147, 179, 188, 214). Given that Ca$_{2.1}$ transcripts are extensively processed by alternative splicing, it is attractive to speculate that different Ca$_{2.1}$ splice variants are targeted to different subcellular compartments in mammalian brain neurons.

In situ hybridization studies in rat brain revealed the expression of Ca$_{2.2}$ mRNA in most regions of the brain except in habenula (181). Localization studies on Ca$_{2.2}$ channels using autoradiography of the Ca$_{2.2}$-specific 125I-labeled ω-GIVA-conotoxin (149) in mammalian brain revealed high-density expression in neuronal synaptic terminals in the striatum, hippocampus, cortex, and cerebellum (3, 9, 148, 320, 321). Higher resolution analyses in the hippocampus revealed intense 125I-ω-GIVA-conotoxin-binding signals in regions rich in axons and presynaptic terminals, mainly in the CA3 s. lucidum where mossy fiber axons and terminals are located (9). Strong 125I-ω-GIVA-conotoxin-binding signals were also detected in the infragranular polymorphic region of the dentate gyrus, and s. radiatum and s. lacunosum moleculare of CA1, which contains the Schaffer collateral, and lateral perforant path, axons, and nerve terminals (9). Immunolocalization studies using a Ca$_{2.2}$-specific antibody yielded similar results with strong immunoreactivity in punctate/synaptic structures in rat brain (356). Although robust Ca$_{2.2}$ immunoreactivity was seen in the mossy fiber expansions/presynaptic terminals in the s. lucidum of hippocampal CA3 relative to the immunoreactivity in the preceding axon shafts, some Ca$_{2.2}$ immunoreactivity was also seen on the dendrites of pyramidal cells in the layers II/III and V of neocortex and of layers CA1–CA3 of hippocampus (85, 356). Studies in organotypic cultures of rat hippocampal CA3 revealed stronger Ca$_{2.2}$ immunoreactivity associated in CA3 pyramidal cell dendrites than in mossy fiber terminals (85). Analyses of Ca$_{2.2}$ localization in human hippocampus with a distinct antibody revealed less immunoreactivity in mossy fiber terminals compared with that in rats, although the labeling corresponded well with that for calbindin, a standard marker for CA3 mossy fiber terminals (68).

While the basis for these differences in these localization of Ca$_{2.2}$ is not yet apparent, it is known that alternative splicing of Ca$_{2.2}$ mRNA at the COOH terminus leads to the generation of long (Ca$_{2.2a}$) and short (Ca$_{2.2b}$) channel isoforms (362). The long Ca$_{2.2a}$ variant/isoform is specifically targeted to presynaptic terminals when expressed exogenously in cultured hippocampal neurons, whereas the short Ca$_{2.2b}$ isoform is localized uniformly in the soma and dendrites (179). Such a difference in the targeting of exogenously expressed Ca$_{2.2}$ splice variants may underlie the earlier observation of nonpolarized expression of the total neuronal pool of Ca$_{2.2}$ channels in mammalian brain (356). However, thorough immunolocalization studies using splice variant-specific Ca$_{2.2}$ α-subunit antibodies has not yet been accomplished to demonstrate the specific subcellular localization Ca$_{2.2}$ alternative splice products.

In situ hybridization studies in rat brain showed the expression of Ca$_{2.3}$ mRNA in almost all regions of the brain including habenula, where Ca$_{2.1}$ and Ca$_{2.2}$ mRNAs were not detected (181). Immunolocalization studies on Ca$_{2.3}$ suggested a more prominent localization in the midbrain and hindbrain region than in forebrain structures, where Ca$_{2.1}$ and Ca$_{2.2}$ are more prominently localized (372). Strong immunoreactivity for Ca$_{2.3}$ was observed in the soma of most cell types; however, close inspection of somatic immunoreactivity in the principal cells in neocortex and hippocampus at higher magnifications suggested perinuclear/intracellular localization of these channels, perhaps representing biosynthetic pool of inefficiently trafficked channels (372). Neurons in the globus pallidus, thalamus, anterior amygdala, subthalamic nuclei, and hypothalamus exhibited strong plasma membrane immunoreactivity in the soma and dendrites. Prominent Ca$_{2.3}$ immunoreactivity was also observed in the soma and dendrites of cerebellar Purkinje neurons (372). However, subsequent immunoelectron microscopic analyses revealed that in rat globus pallidus neurons, Ca$_{2.3}$ immunoreactivity was clearly present in dendritic structures as well as in a subpopulation of presynaptic boutons (111).

D. Ca$_{3}$ Subfamily

The Ca$_{3}$ family or T-type Ca$_{v}$ channels underlie transient currents that activate at subthreshold membrane
potentials and that are crucial for the regulation of plasma membrane calcium permeability near resting membrane potentials and during action potentials. Ca\textsubscript{3.1} family members (Fig. 5) have diverse expression patterns in mammalian brain (323, 380). Immunolocalization studies revealed that Ca\textsubscript{3.1} channels are prominently expressed in hindbrain (cerebellum and medulla) with low-intensity immunoreactivity in forebrain and midbrain regions in human, rat, and mouse (62, 323, 380). In the cerebellar cortex, strong and specific Ca\textsubscript{3.1} immunoreactivity was detected in the thick processes in the molecular layer, with or without additional immunoreactivity in Purkinje cell bodies (62, 380). This immunoreactivity pattern is presumably associated with the soma and dendrites of Purkinje cells, given the high levels of Ca\textsubscript{3.1} mRNA in rat cerebellar Purkinje cell somata (62, 323), and relatively low mRNA levels in granule cells and basket cells. In the medulla, strong and specific Ca\textsubscript{3.1} immunoreactivity was observed in the hypoglossal nucleus, the inferior olive, and the lateral reticular nucleus. Although in some neurons Ca\textsubscript{3.1} immunoreactivity exhibited intracellular localization, in others it was present uniformly on the plasma membranes of somatic and proximal dendritic membranes (62). A recent study on immunolocalization of Ca\textsubscript{3.1} channels in rat brain using isoform-specific antibody revealed expression of these channels in the neocortex, thalamus, hippocampus, and cerebellum (201). Specific Ca\textsubscript{3.1} immunostaining was observed in the soma and proximal dendrites of layers I–IV and layer V cortical pyramidal neurons, hippocampal CA1, CA3, and subicular pyramidal neurons (Fig. 6G). However, in hippocampal dentate granule cells, neurons in the thalamus, midline thalamic nuclei, and cerebellar Purkinje cells, Ca\textsubscript{3.1}-specific immunostaining was more restricted to the cell somata (201).

In situ hybridization studies showed that in rat hippocampus the Ca\textsubscript{3.2} mRNA was found at high levels in dentate granule cells and CA pyramidal cells, as well as in olfactory bulb neurons (323). Ca\textsubscript{3.2} immunostaining is present in the soma and medial dendrites of specific neurons in the neocortex, thalamus, hippocampus, and cerebellum (201). Ca\textsubscript{3.2} immunostaining was found in the soma and proximal dendrites of layers I–IV and layer V cortical pyramidal neurons. However, in hippocampal CA1, CA3, and subicular pyramidal neurons, Ca\textsubscript{3.2} immunostaining was extended to medial dendrites, in addition to the somatic and proximal dendritic staining (Fig. 6H). Ca\textsubscript{3.2}-specific immunostaining, like that of Ca\textsubscript{3.1}, was also restricted to neuronal somata in hippocampal dentate granule cells, neurons in the thalamus, midline thalamic nuclei, and cerebellar Purkinje cells, (201).

Initial in situ hybridization and immunolocalization studies on Ca\textsubscript{3.3} channels in mammalian brain suggested prominent localization in olfactory bulb and mid brain, distinct from that for Ca\textsubscript{3.1} (323, 380). Intense Ca\textsubscript{3.3} immunoreactivity was also observed in the olfactory nerve layer and glomerular layer in mouse olfactory bulb (380). In hippocampus, Ca\textsubscript{3.3}-specific immunoreactivity was observed in a subset of interneurons dispersed throughout s. lucidum of the dentate gyrus, CA3, and CA2, and subiculum, with the highest intensity in the CA2. In the dentate gyrus, strong immunoreactivity was seen in the inner and outer thirds of the molecular layer, which suggests localization of Ca\textsubscript{3.3} on terminals of the associational and commissural pathways of the dentate gyrus and of the lateral perforant pathway of entorhinal cortex, respectively (380). These staining patterns might represent input-specific localization of Ca\textsubscript{3.3} channels to specific subdomains of dentate granule cell dendrites. In rat cerebellar cortex, strong Ca\textsubscript{3.3} immunoreactivity was seen in the molecular layer, which appeared diffuse and associated with the parallel fibers and/or their terminals (380), consistent with the observation of high levels of Ca\textsubscript{3.3} mRNA in the granule cell layer, but not in the Purkinje cell or molecular layer (323). A recent report revealed the expression and somatodendritic localization of Ca\textsubscript{3.3} channels in specific neuronal subtypes in the neocortex, thalamus, hippocampus, and cerebellum (201). Ca\textsubscript{3.3} immunostaining was restricted to the soma and proximal dendrites of layers I–IV cortical pyramidal neurons. However, in layer V cortical pyramidal neurons, hippocampal CA1, CA3, and subicular pyramidal neurons as well as in cerebellar Purkinje cells, Ca\textsubscript{3.3} immunostaining was seen in the soma as well as throughout the dendrites (Fig. 6, I–K). Like Ca\textsubscript{3.1} and Ca\textsubscript{3.2}, in hippocampal dentate granule cells, neurons in the thalamus and midline thalamic nuclei, Ca\textsubscript{3.3} specific immunostaining was restricted to soma (201).

E. Ca\textsubscript{\textgamma}, Auxiliary Subunits

Functional Ca\textsubscript{\textgamma} channels are composed of four subunits, including the pore-forming Ca\textsubscript{\alpha\textgamma} subunit, and auxiliary Ca\textsubscript{\alpha\textgamma2\textdelta}, Ca\textsubscript{\beta}, and Ca\textsubscript{\gamma} subunits (Fig. 5) as determined originally by biochemical purification of Ca\textsubscript{\gamma} channel complexes (41, 145). Classification of these three subunits as bona fide Ca\textsubscript{\gamma} channels auxiliary subunits is based on their presence in purified Ca\textsubscript{\gamma} channel complexes, their direct interaction with the pore-forming \alpha\textgamma subunit, and their ability to modulate the biophysical and/or trafficking properties of coexpressed Ca\textsubscript{\alpha\textgamma} subunits (8, 76).

The Ca\textsubscript{\alpha\textgamma2\textdelta} subunit is composed of two polypeptides (Ca\textsubscript{\alpha\textgamma2} and Ca\textsubscript{\delta}) that are the products of the same gene and generated by the posttranslational cleavage of a single large precursor polypeptide into Ca\textsubscript{\alpha\textgamma2} and Ca\textsubscript{\delta} polypeptides and their subsequent covalent linkage by disulfide bonds (Fig. 5). Topologically, the Ca\textsubscript{\delta} peptide has a single transmembrane segment, with the Ca\textsubscript{\alpha\textgamma2}
polypeptide being completely extracellular (Fig. 5). Association of Ca_α_δ subunits enhances the membrane trafficking and current density of coexpressed Ca_α subunits, and also modulates the channel’s voltage-dependent gating (8). Some of these effects can be observed in the absence of coexpressed Ca_β subunits, whereas others display an absolute Ca_α requirement. Four distinct Ca_α_δ subunits, that interact with the Ca_α_1 subunits have been reported, of which only Ca_α_δ-1, Ca_α_δ-2, and Ca_α_δ-3 have been found expressed in mammalian brain (8, 106, 158). However, information on the specific subcellular localization of individual Ca_α_δ subunits (although see description of studies with a general anti-Ca_α_δ subunit antibody described above), as well as their distribution relative to Ca_α subunits in mammalian brain is lacking.

The Ca_β subunit is a product of a single gene, which subsequently gives rise to several alternatively spliced isoforms (8, 75, 117). Four distinct Ca_β subunit genes (Ca_β1-Ca_β4) have been described. Topologically, Ca_β subunits are cytoplasmic polypeptides (Fig. 5), although Ca_β1b and Ca_β2α isoforms can associate with the plasma membrane independent of Ca_α subunits (23, 51). Interaction of Ca_β subunits with Ca_α subunits promotes channel trafficking to the plasma membrane and modulates voltage-dependent gating (18, 306). In situ hybridization and immunolocalization studies in mammalian brain revealed that the Ca_β1b splice variant mRNA is expressed throughout the brain, with a diffuse cytoplasmic distribution (181). The Ca_β2 subunit is found expressed only in specific cell types in thalamus, cerebellum, and hippocampus, including cerebellar Purkinje neurons and hippocampal pyramidal neurons (17, 181). Strong immunostaining of both Ca_β2 and Ca_β1 is seen in mammalian brain, with prominent Ca_β2 immunoreactivity in olfactory bulb, cortex, hippocampus, habenula, and cerebellum, and prominent Ca_β1 immunoreactivity in cerebellum, with moderate to low immunoreactivity in olfactory bulb, cortex, hippocampus, and brain stem (181). Comparative distribution studies of Ca_α and Ca_β subunits indicate no exclusive association between particular pairs of these principal and auxiliary subunits. In particular, the Ca_β subtype associated with presynaptic Ca_α channels is not known. The only known examples of presynaptic Ca_β subunits are Ca_β2 and Ca_β4 subunits in cerebellum (181, 359). Based on the polarized expression of exogenous Ca_β subunits in polarized epithelial cells (28), it is predicted that in cerebellar Purkinje neurons, the somatodendritic Ca_2.1 α1 subunits might be associated largely with the Ca_β2α subunits, whereas the presynaptic Ca_2.1 α1 subunits might be associated with the Ca_β4 subunits (75). However, thorough information on the subcellular localization of specific Ca_α,α1-β combinations in mammalian brain is lacking.

The Ca_γ subunits are transmembrane proteins having four transmembrane segments and predicted intracellular NH_2 and COOH termini (Fig. 5). To date, eight Ca_γ subunits (designated Ca_γ1-Ca_γ8) have been identified (8, 20), although only Ca_γ1 and Ca_γ6 may act as auxiliary subunits of Ca_α channels (49), with all others acting as glutamate receptor auxiliary subunits (226). All, with the exception of Ca_γ1, have been found expressed in mammalian brain, where Ca_γ2, Ca_γ3, and Ca_γ4 have been found associated and colocalized with Ca_2.1 and Ca_2.2 α1 subunits (294). Interestingly, unlike Ca_α_δ and Ca_β subunits, Ca_γ subunits do not affect the trafficking and plasma membrane expression of coexpressed Ca_α subunits, but do impact the biophysical properties of the resultant Ca_α channels (8, 20). Nonetheless, thorough information on the role of Ca_γ subunits in the function of specific neuronal Ca_α channels is lacking.

V. VOLTAGE-DEPENDENT ION CHANNEL REPERTOIRE OF SPECIFIC NEURONAL COMPARTMENTS

In this section, we provide selected examples of the VDIC distributions detailed above, but here organized by neuronal compartment. As different neurons may exhibit different subcellular distributions of specific VDICs, an exhaustive recapitulation of the details of VDIC expression in specific compartments of every type of neuron is well beyond the scope of even this detailed review. However, a brief summary of hallmarks of a subset of channels in well-characterized neurons is informative as to the repertoire of VDICs involved in compartment-specific functions.

A. Axons

The generation, propagation, and modulation of action potentials in neurons requires the precise subcellular localization of axonal VDICs (13). Among VDICs, a restricted subset has been found expressed in the axons of mammalian brain neurons. This set includes K_1.1, K_1.2, K_1.4, and their auxiliary K_β1 and K_β2 subunits; K_3.1b, K_3.3, and K_3.4; K_7.2 and K_7.3; Na_1.1, Na_1.2, and Na_1.6; and Ca_1.2 (25, 48, 70, 72, 128, 167, 221, 259, 342). Two prominent examples of high-density VDIC clustering in mammalian axons are the axon initial segment and the node of Ranvier. The initial segment, an axonal subdomain essential for action potential initiation, expresses a high density of Na_1.6, or Na_1.2 at younger ages (24), and occasionally Na_1.1 (342). K_1.1 and K_1.2 (72, 128), and K_7.2 and K_7.3 (229, 250). The node of Ranvier, characterized by regularly spaced, short 1-μm gaps in the myelin sheath, expresses high densities of clustered Na_1.6, or Na_1.2 in immature nodes (24), and K_7.2 and K_3.1b,
which generate the slowly activating (Ks) and the fast (Kf2) nodal currents, respectively (70, 71). High-density clustering of K1.1, K1.2, and K1.4 as well as Kβ1 and Kβ2 (260). In neocortex and hippocampus, K3.4 appear to be localized to axons, frequently colocalizing with these K1 family members (167). Unmyelinated axons of dentate granule cells and cerebellar granule cells express Na1.2 and Na1.6 (31, 100, 282, 284, 357). Ca1.2 channels exhibit localization in axons and growth cones when exogenously expressed in cultured hippocampal neurons, but with further maturation are found in the soma and dendrites, although some localization in the axon initial segment can be observed (221).

B. Presynaptic Terminals

At the presynaptic terminal, VDICs play a critical role in regulating nerve terminal excitability and controlling calcium influx, which consequently regulate neurotransmitter release. K1.1, K1.2, and K1.4 are concentrated in the axonal membrane immediately preceding or within the presynaptic terminal (61, 73, 347). Biochemical studies demonstrate that most K1 channels isolated from brain synaptic membranes contain K1.2 subunits, with K1.2 homomers being prevalent (293). Studies on calyx of Held presynaptic terminals show that K1.2 is located at the transition zone between the axon and terminal but are excluded from the terminal itself (73). K1.2 located here does not influence action potentials within the terminal per se, but instead suppress axonal excitability, ensuring that aberrant action potentials do not invade the nerve terminal and elicit transmitter release (73). In cerebellar basket cell terminals, K1.1, K1.2, Kβ2, and K3.4 colocalize at the level of the light microscope, but exhibit distinct ultrastructural localizations (167, 260). K1.1, K1.2, and Kβ2 are present in the septate-like junctions formed between basket cell terminal and Purkinje cell axons, while K3.4 is found in nonjunctional region of basket cell terminals (167). K3.2 is also found in basket cell terminals at sites distinct from K3.4 sites (22). K3.2 is distributed to focal regions also distinct from the septate junctions (K1.1 and K1.2), and corresponding to vesicle clusters at the terminal active zone, such that basket cell terminals possess a mosaic of Kα channel subunits (22). Na1.2 is also found concentrated near nerve terminals, such as in globus pallidus, presumably on nerve terminals of striatal afferents, and in CA3 s. lucidum, presumably on mossy fiber terminals (100). Specific immunolocalization of Ca2.1 and Ca2.2 has been reported in the presynaptic area of neurons in rat cerebellar molecular layer and the mossy fiber zone of hippocampal CA3 region (178, 359). The long splice variant of Ca2.2 (Ca2.2a), but not the short variant/isoform Ca2.2b, is specifically targeted to presynaptic terminals when expressed exogenously in cultured hippocampal neurons (197). In rat brain globus pallidus neurons, a subset of Ca2.3 is localized in a subpopulation of presynaptic boutons, as revealed by immunoelectron microscopy (111).

C. Soma and Proximal Dendrites

In neurons, the initiation of dendritic action potentials in response to excitatory postsynaptic potentials, and their subsequent active propagation to the soma, requires somatodendritic VDICs, many of which also contribute to backpropagation of action potentials from soma to dendrites (13, 164). A large subset of VDICs has been found expressed in the soma and dendrites of mammalian central neurons, including K1.1, K1.2, K2.1, K2.2, K3.1a and K3.2, K4.2, K4.3 and their auxiliary KChIP and DPP-like subunits, and K7.5 (127, 216, 257, 289, 297, 332, 347, 381). Na1.1, and to a lesser extent Na1.6, are also found in dendrites (100, 282, 357) as well as Ca1.2, Ca1.3, Ca2.1, Ca2.2, Ca2.3, Ca3.1, Ca3.2, and Ca3.3 and their auxiliary subunits (85, 116, 323, 372, 380). In terms of specific subcellular localization of VDICs on dendrites, there exists a distinction between those found in the soma and proximal dendrites, and those on distal dendrites. In the soma and proximal dendrites, there are high levels of K2.1, K2.2, K2.2a, K3.3, and in interneurons K3.1b, K3.3, and K4.3 (53, 77, 127, 297, 335). Among Naα channels, Na1.1 is predominantly expressed in the soma and proximal dendrites of many mammalian brain neurons, although Na1.6 is also present in certain cell types (33, 357). Almost all the Caα channels have been found expressed in the soma and proximal dendrites, in varying degrees, and in different neurons (335). For example, although Ca2.1 and Ca2.2 are predominantly expressed in axon terminals of most central neurons, they are also expressed in the soma and proximal dendrites of cerebellar Purkinje neurons and hippocampal CA1-CA3 pyramidal neurons (85, 356). Ca3.1 and Ca3.2 are also restricted to the somata of certain cell types, such as hippocampal dentate granule neurons and cerebellar Purkinje neurons (201). It should be noted when evaluating immunostaining data showing localization of VDICs on the soma and proximal dendrites that these domains contain the bulk of the neuron’s rough endoplasmic reticulum and Golgi apparatus. As such, some of the immunostaining reported for VDICs may be intracellular biosynthetic pools destined for other compartments (e.g., axons), as

Physiol Rev • VOL 88 • OCTOBER 2008 • www.prv.org
opposed to functional plasma membrane populations. Moreover, these domains are also a major site of nonspecific antibody staining (261). As such, the reported somatodendritic expression of certain VDICs may not be representative of channel pools regulating excitability of these domains.

D. Distal Dendrites

In distal dendrites of neurons, specialized expression of different VDICs is critical not only for the active propagation of dendritic action potentials from dendrites to soma, but also for controlling backpropagation of action potentials from the soma into dendrites. Kv4 channels play a crucial and dynamic role in the latter process (378), and principal and auxiliary subunits of Kv4 channels are prominently expressed in distal dendrites (205, 257, 297). Other K\(_\varepsilon\) channels localized in the distal dendrites of mammalian brain neurons are K\(_\varepsilon\)2.2, K\(_\varepsilon\)7.2, K\(_\varepsilon\)7.3, and K\(_\varepsilon\)7.5, which are expressed in varying densities in different cell types (34, 127). A subpopulation of neuronal K\(_\varepsilon\)1.1 channels is also found in the distal dendrites of certain mammalian brain neurons (50). Ca\(_\varepsilon\)1.2 and Ca\(_\varepsilon\)3.3 channels are expressed in the distal dendrites, in addition to their localization in the soma and proximal dendrites (85, 201). However, in certain types of mammalian brain neurons, Ca\(_\varepsilon\)2.1, Ca\(_\varepsilon\)2.2, and Ca\(_\varepsilon\)2.3 are also expressed throughout the somatodendritic region (111, 119). Dynamic activity-dependent changes in the localization of K\(_\varepsilon\)4.2 and Ca\(_\varepsilon\)1.3 in distal dendrites, especially in relation to excitatory synapses, have recently been reported (153, 383).

VI. MECHANISMS UNDERLYING VOLTAGE-DEPENDENT ION CHANNEL LOCALIZATION

A. K\(_\varepsilon\) Channels

As described in detail above, among VDICs expressed in mammalian central neurons, K\(_\varepsilon\) channels have among the most diverse patterns of subcellular segregation. K\(_\varepsilon\)1 channels are predominantly localized in axons. Recent studies suggest a prominent role for K\(_\varepsilon\)\(\beta\) subunits in determining this localization. K\(_\varepsilon\)1\(\alpha\) subunits overexpressed in cultured hippocampal neurons exhibit a somatodendritic localization, whereas cotransfection of the K\(_\varepsilon\)2.2 subunit, which in itself is preferentially localized to axons (35), yields a pronounced axonal localization of K\(_\varepsilon\)1.2 (35, 101). Subsequent analyses of K\(_\varepsilon\)1.2 deletion mutants and chimeric channels revealed that the NH\(_2\)-terminal T1 domain, which comprises the K\(_\varepsilon\)\(\beta\) subunit binding site (105, 291, 377), is essential for axonal expression of K\(_\varepsilon\)1.2 channels (101). Specific mutations to disrupt K\(_\varepsilon\)2 binding also disrupted axonal expression of K\(_\varepsilon\)1 \(\alpha\) subunits in transfected neurons, further suggesting that endogenous K\(_\varepsilon\)\(\beta\) subunits were contributing to the axonal K\(_\varepsilon\)1 localization (101). Remarkably, when appended to single-pass transmembrane reporter proteins, the K\(_\varepsilon\)1.2 T1 domain, but not T1 domain mutants with altered K\(_\varepsilon\)\(\beta\) binding, was able to direct the axonal localization of reporter proteins when coexpressed with K\(_\varepsilon\)2 (101). Thus cytoplasmic K\(_\varepsilon\)\(\beta\) subunits may affect not only early biosynthetic processing events and ER export (299), but also axonal localization (35, 101), of K\(_\varepsilon\)1 channels.

Recent studies have shown that axonal targeting of K\(_\varepsilon\)1 channels is dependent on the direct interaction of K\(_\varepsilon\)\(\beta\) with the microtubule plus-end-tracking protein EB1 (102). Analysis of K\(_\varepsilon\)\(\beta\) deletion mutants revealed that disruption of the association of K\(_\varepsilon\)\(\beta\) with EB1 dramatically decreases K\(_\varepsilon\)1.2 axonal targeting (102). Suppression of endogenous EB1 expression using siRNA also impairs axonal targeting of endogenous K\(_\varepsilon\)1 channels, but not of endogenous Na\(_\varepsilon\) channels (102), which appear to target to axons by distinct mechanisms and motifs (94). Another recent study shows that K\(_\varepsilon\)1 channel axonal targeting is not only dependent on EB1 and K\(_\varepsilon\)\(\beta\), but also on the interaction of the K\(_\varepsilon\)1 \(\alpha\)-subunit T1 domain with the kinesin KIF5B (264). The role of K\(_\varepsilon\)\(\beta\), which also binds at the T1 domain, was not addressed in this study, although endogenous K\(_\varepsilon\)\(\beta\) was presumably expressed in the neurons in the cultured cortical slices used in these studies (264). As such, the T1 domain of K\(_\varepsilon\)1 \(\alpha\) subunits mediates multiple protein-protein interactions, including tetrameric assembly of K\(_\varepsilon\)1 \(\alpha\) subunits, association with K\(_\varepsilon\)\(\beta\) subunits (and their EB-1 binding partner), and interaction with KIF5B.

Membrane-associated guanylate kinases (MAGUKs) such as PSD-95, Chapsyn-110, SAP102, and SAP97 function as scaffolding molecules to promote clustering of membrane receptors and ion channels (84). Mutational and structural analyses showed that the PDZ domains of PSD-95 and other MAGUKs bind to the PDZ-binding motif (S/TxV) at the COOH terminus of all K\(_\varepsilon\)1 \(\alpha\) subunits (78, 151, 152, 327). In most mammalian central neurons, MAGUKs are found at synapses, most prominently in the postsynaptic density (295), while K\(_\varepsilon\)1 channels are predominantly found on axons (335). However, MAGUKs are found as prominent components of K\(_\varepsilon\)1 complexes purified from mammalian brain (287). Examples where K\(_\varepsilon\)1 channels and MAGUKs, in this case PSD-95 in cerebellar basket cell terminals (151, 167) and at the juxtaparanodal regions of nodes of Ranvier (247). Mutation of the Drosophila discs-large gene, the ortholog of PSD-95, results in failure to localize Shaker potassium channels to the neuromuscular junction of flies (388). However, mutation of PSD-95 in mice does not lead to altered K\(_\varepsilon\)1 channel localization.
at juxtaparanodes and cerebellar basket cell terminals (245). At the level of the light microscope, the localization of
Kv1.1 and Kv1.2 in basket cell terminals and juxtaparanodes is normal in transgenic mice expressing a truncated form of PSD-95 that is no longer expressed at these sites. Compensatory expression of other MAGUKs does not appear to be involved in maintaining Kv1 channel localization at these sites (245). However, genetic elimination of another PDZ binding protein found at the juxtaparanode, Caspr2, does lead to loss of Kv1 channels at these sites (237). While MAGUKs or other PDZ containing proteins remain attractive candidates for the interacting proteins that cluster Kv1 channels and Caspr2 at discrete plasma membrane subdomains such as juxtaparanodes of myelinated axons, axon initial segments, and near nerve terminals, the specific binding partners mediating the clustering and their regulation remain to be elucidated.

Initial studies of the polarized and clustered localization of Kv2,1 were performed in polarized epithelial MDCK cells. In these cells, Kv2,1 localizes in the basolateral membrane (281), consistent with the analogous membrane hypothesis whereby the apical and basolateral membranes of epithelial cells correspond to the axonal and somatodendritic membranes, respectively, of neurons (77). Interestingly, Kv2,1 is also present in large clusters in the basolateral domains of MDCK cells (281), as it is in neurons. Expression of truncation mutants that lacked relatively large portions of the cytoplasmic Kv2,1 COOH terminus revealed that an ~130 amino acid segment approximately midway in the 440-amino acid COOH terminus of Kv2,1 was necessary for both polarized expression and clustering in MDCK cells (281). These findings were later extended by studies in primary cultures of hippocampal neurons (175), where further deletion analyses revealed an ~25 amino acid segment that was necessary for polarized and clustered localization. This sequence is well conserved in Kv2,2, which has a localization distinct from Kv2,1, suggesting additional targeting determinants. An alanine scan through this region revealed that three of the four critical amino acids are serine residues, consistent with subsequent studies showing a role for phosphorylation in regulating Kv2,1 clustering (208, 209).

Electron microscopic analysis has shown that plasma membrane Kv2,1 clusters on the somata and proximal dendrites of pyramidal neurons lie over subsurface cisternae (82), and at F-type muscarinic synapses in spinal motor neurons (215). These specialized sites where intracellular Ca$^{2+}$ stores come into close apposition with the plasma membrane represent a specialized neuronal signaling domain that may also contain elevated levels of voltage-dependent Ca$^{2+}$ channels (355). A functional relationship between Kv2,1 and dendritic [Ca$^{2+}$], transients were revealed by antisense knock down of Kv2,1 in rat hippocampal neurons (81). Moreover, Kv2,1 clusters co-localize with ryanodine receptor intracellular Ca$^{2+}$ release channels in cultured hippocampal neurons (7). These findings suggest that the clustered localization of Kv2,1 could affect dendritic Ca$^{2+}$ signaling at these sites, and vice versa.

Some of the most exciting studies in the ion channel clustering field have recently revealed the dynamic nature of Kv2,1 clustering. These live cell imaging studies reveal that although Kv2,1 localization is restricted to clusters, within these clusters Kv2,1 is freely mobile (222). This has led to a perimeter fence model for Kv2,1 clustering, whereby Kv2,1 is not attached to scaffolding proteins per se, but is clustered through interaction with the actin-based cytoskeleton that is somehow involved in determining the perimeter of Kv2,1 clusters (324). It is not yet clear from this intriguing model for Kv2,1 clustering how point mutations (175), and dephosphorylation of COOH-terminal Kv2,1 phosphorylation sites (208, 209), would eliminate clustering, and the relationship of these dynamic clusters to intracellular membranes.

The polarized expression of three different COOH-terminal Kv3,2 splice variants (Kv3,2a, b, and c) in polarized epithelial cells revealed that alternative splicing leads to differences in subcellular localization. The Kv3,2a variant was localized to the basolateral membrane, whereas the Kv3,2b and Kv3,2c isoforms were found apically (238). A recent report suggests that the polarized expression of Kv3,1 channels may also be determined by COOH-terminal splicing that affects interaction with ankyrin-G (369). This may be consistent with the localization of Kv3,1b at nodes of Ranvier (70), which contain high levels of ankyrin-G. Is it intriguing that Kv3,1b is not found at the initial segments of the same axons, as many other nodal proteins are also found here, including ankyrin-G (229, 342).

As described above, Kv4 channels exhibit strict polarized somatodendritic localization in neurons (335). The determinants of dendritic targeting of Kv4 α subunits have recently been investigated using chimeras between Kv4,2 and axonally localized Kv1,3 (265). Analyses of these chimeras revealed a critical 16-amino acid dileucine-containing motif in the cytoplasmic COOH-terminal region of Kv4,2 that is conserved in all Kv4 family members from nematodes to mammals (265). Unlike the determinant for polarized localization and clustering of dendritic Kv2,1, the Kv4 targeting signal also targets a type 1 membrane protein reporter protein (CD8) to dendrites (265). It should be noted that these results were obtained in a neuronal background that presumably contains endogenous KChIPs and/or possibly DPPX, as such the contribution of these interacting proteins to mediating the effects of this targeting signal cannot be determined. Thus it will be important to determine whether this trafficking signal directs polarized Kv4 targeting in an expression background lacking these proteins (e.g., MDCK cells), or...
whether K\textsubscript{4,2} mutants that lack KChIP and DPP-like auxiliary subunit binding still localize to dendrites. Conversely, a direct determination of the role of auxiliary subunits in the polarized expression of K\textsubscript{4} channels is needed. Dendritic targeting of K\textsubscript{4} channels also appears to involve the action of the microtubule-based motor protein kinesin Kif17 (54). Knockdown of Kif17 inhibits dendritic localization of K\textsubscript{4,2}, and K\textsubscript{4,2} and Kif17 can be copurified from brain and heterologous cells. Interestingly, Kif17 interacts with the K\textsubscript{4,2} COOH terminus outside of the motif previously defined as critical for K\textsubscript{4,2} localization on dendrites, and knockdown of Kif17 does not affect dendritic localization of the CD8 reporter protein containing the K\textsubscript{4} family dendritic localization signal (54). The authors suggest that the Kif17 motor may be the primary mechanism for K\textsubscript{4,2} transport to dendrites; the dileucine-based motif is the primary determinant of whether this localization is maintained. The mechanism for this retention is not known.

Other proteins that interact with K\textsubscript{4} \alpha subunits in heterologous cells, such as PSD-95 and filamin, and enhance the steady-state cell surface expression level and clustering of K\textsubscript{4,2} in nonneuronal cell lines may also play a role in the polarized localization of K\textsubscript{4} channels on dendrites (366). However, it is interesting that in cultured hippocampal neurons, the obvious clusters of K\textsubscript{4,2} and PSD-95 (as well as filamin) do not colocalize, but rather appear interdigitated along the dendrites (302). The roles of these proteins in the polarized expression of K\textsubscript{4} channels remain to be elucidated.

K\textsubscript{4,2} localization in cerebellar granule cells in organotypic culture is regulated by synapse formation and glutamatergic synaptic activity (301). Granule cells grown in the absence of synaptic contact from cerebellar mossy fiber axons have K\textsubscript{4,2} aberrantly localized on somata. Upon mossy fiber-granule cell synapse formation, K\textsubscript{4,2} becomes clustered at/near these specialized synapses, in a process that requires ionotropic glutamate receptor activity. Stimulating glutamate receptors in the absence of synapse formation leads to translocation of K\textsubscript{4,2} from the soma to the dendrites (301). A recent study reveals that the localization of K\textsubscript{4,2} on dendrites of hippocampal neurons is also dynamically regulated in response to glutamatergic synaptic activity through clathrin-mediated endocytosis (153). Internalization can be triggered by either glutamate receptor stimulation or paradigms that induce long-term potentiation (153). Internalization of K\textsubscript{4,2} increases dendritic excitability and further potentiates excitatory signaling in dendrites (153). The molecular determinants of the dynamic regulation of K\textsubscript{4} localization, and whether they are intrinsic to K\textsubscript{4,2}, or found on KChIP or DPPX auxiliary subunits, or other interacting proteins, are as yet undefined.

The localization of K\textsubscript{7} channels at axon initial segments has been the focus of recent study (55, 229, 250). K\textsubscript{7,2} and K\textsubscript{7,3} have binding motifs on their COOH-terminal cytoplasmic tails for interaction with the cytoskeletal-associated protein ankyrin-G (229) similar to those found on Na\textsubscript{+} channels (95, 170). K\textsubscript{7,2} and K\textsubscript{7,3} localization at initial segments is disrupted in ankyrin-G knockout mice, and the targeting of exogenous K\textsubscript{7} COOH-terminal fragments to the initial segments requires the ankyrin-G binding motif (55, 229). Deletion of the ankyrin-G binding motif from full-length K\textsubscript{7,2} and K\textsubscript{7,3} also leads to loss of localization of the channel subunits at the axon initial segment (250). Interestingly, in heteromeric K\textsubscript{7,2}/K\textsubscript{7,3} channels that form native M channels (349), the ankyrin-G binding motif of K\textsubscript{7,3} appears to be dominant over that of K\textsubscript{7,2} (250). This is consistent with the finding that COOH-terminal fragments from K\textsubscript{7,3} were more effective at directing reporter proteins to initial segments than were those from K\textsubscript{7,2} (55).

B. Na\textsubscript{+} Channels

As described above, in general, different Na\textsubscript{+} channels have distinct subcellular distributions in mammalian brain: Na\textsubscript{1,1} and Na\textsubscript{1,3} are principally expressed on neuronal cell bodies, Na\textsubscript{1,2} is expressed on unmyelinated axons, and Na\textsubscript{1,6} is present on both dendrites and myelinated axons. The resulting compartmentalized, nonuniform distribution can dramatically impact neuronal excitability. These distinct localization patterns presumably reflect intrinsic and extrinsic mechanisms that selectively target proteins to the axonal or somatodendritic compartments. Despite the central role of Na\textsubscript{+} channels in initiating and propagating neuronal electrical signals, the determinants of their discrete subcellular localizations in mammalian neurons are just beginning to be defined.

1. Axon initial segment determinants

The developmental expression and localization of Na\textsubscript{+} channels at the axon initial segment (Fig. 4, C and D) have mainly been studied in retinal ganglion cells, cerebellar granule cells, and hippocampal neurons (24). In all cases, during early development Na\textsubscript{1,2} is the predominant channel found at the axon initial segment. However, at later developmental stages, Na\textsubscript{1,6} is also detected at the axon initial segment together with Na\textsubscript{1,2}. The reason for the difference in temporal expression of the two distinct Na\textsubscript{+} channels is unknown. Surprisingly, a recent study showed that the proximal axon initial segment of retinal ganglion cells and a subset of hippocampal CA3 neurons could also exhibit strong staining for Na\textsubscript{1,1} channels (Fig. 4D), which generally has a somatodendritic distribution (342). Targeting and sequestration of Na\textsubscript{+} channels at the axon initial segment involves a macromolecular complex of interacting proteins, including the cytoskeletal proteins ankyrin-G and \beta IV spectrin, the cell...
adhesion molecules neurofascin-186 (Nf-186) and neuron-glia related cell adhesion molecule NrCAM, and Na,β auxiliary subunits (137, 276, 386). The COOH-terminal cytoplasmic domain of the Na,1 α subunit appears to control the polarized localization of Na,1 channels in the axon (93).Appending the COOH-terminal cytoplasmic tail of Na,1.2 onto a reporter protein leads to its targeting to axons (93). Deletion analyses of the Na,1.2 COOH terminus led to identification of a short sequence, CLDILFAFT, that directs axonal targeting. This same sequence is also recognized by components of the endocytic pathway, suggesting that Na,1.2 is delivered to the surface of both axons and dendrites and retrieved by endocytosis from the soma and dendrites (93). Interestingly, this sequence is 100% conserved in all neuronal Na, channels (Na,1.1, Na,1.2, Na,1.3, and Na,1.6) that exhibit very different subcellular localizations in mammalian brain. As such, the contribution of this signal in the establishment and maintenance of the contrasting patterns of subcellular localization of different Na, isoforms in mammalian central neurons is unclear. However, the overall similarity of the distal COOH termini of Na,1 α subunits is low, such that differences in the overall structure of this domain could impact the activity of the axonal targeting motif. A second Na,1 targeting determinant has been identified in the interdomain II–III linker that directs Na,1 localization to the axon initial segment (95, 170). This determinant mediates Na,1 interaction with the cytoskeletal scaffold ankyrin-G. However, it is important to note that this axon initial segment targeting motif is also conserved among all Na,1 channels. This suggests that, like many of the identified targeting signals described above, there exist additional determinants that modulate activity of this conserved signal. It is important to note that a similar signal targets K,7.2 and K,7.3 to axon initial segments (see above).

2. Node of Ranvier determinants

Nodes of Ranvier have molecular similarities with axon initial segment (e.g., high density of Na, channels, K, channels, the cytoskeletal proteins ankyrin-G and βIV spectrin, the cell adhesion molecules NF-186 and NrCAM). However, there exists a major distinction between these two domains: recruitment of proteins at nodes of Ranvier requires myelinating glia, but recruitment at the axon initial segment is neuronal autonomous (115). Although it is clear that myelinating oligodendrocytes are required for node of Ranvier formation and VDIC clustering, studies suggest that the Na,1 channel clustering can be induced by a soluble factor released by oligodendrocytes (146), whereas other studies suggest a requirement for intact myelin (24, 244, 246, 358). The cell adhesion molecule NF-186 is also required for the formation of CNS nodes, and mice with a neurofascin gene deletion, which appear to have intact myelination, fail to cluster Na,1 channels (as well as NrCAM, ankyrin-G, and βIV spectrin) at the node (298). Clustering of Na,1 channels at axon initial segments, nodes of Ranvier, and other sites in central neurons remains an exciting focus of much current research.

C. Ca, Channels

Proper functioning and specific targeting of individual Ca, channels into different subcellular compartments of neurons is crucial for the maintenance and physiological regulation of normal neuronal activity. As detailed above, different Ca, channel subtypes exhibit different subcellular distributions in mammalian brain neurons, with Ca,2.1 and Ca,2.2 channels exhibiting predominantly axonal and presynaptic localization, and Ca,1 and Ca,3 channels mainly exhibiting somatodendritic expression.

Interaction with the Ca,β subunit has been suggested to promote the presynaptic targeting of Ca,2.1 channels (28, 365). This coincides with the preferential presynaptic localization of Ca,β subunits in mammalian brain neurons (365). Coexpression of the Ca,β subunit in MDCK cells has also been shown to promote the targeting of Ca,2.1 channels to apical membranes (28), suggesting a possible role for Ca,β in axonal targeting of Ca,2.1 (75). The Ca,β subunits contain two conserved protein-protein interaction domains, a src Homology-3 (SH3) domain, and a guanylate kinase (GK) domain, both of which are also found in channel clustering MAGUK scaffold proteins (108). These domains mediate the trafficking, targeting, and voltage-dependent gating effects that Ca,β subunits exert on coexpressed Ca, α1 subunits (92). A recent report suggests that the SH3 and GK domains can autonomously act to exert Ca,β subunit-like modulatory effects on Ca, α1 subunit trafficking and voltage-dependent gating (319). However, the precise mechanism underlying the Ca,β subunit-mediated targeting of Ca, α1 subunits remains unclear.

Recent reports have strongly suggested the presence of a major intrinsic molecular determinant of presynaptic targeting in the Ca,2.1 and Ca,2.2 channels, namely, a synaptic protein interaction site called the synprint site, which lies within the domain II–III cytoplasmic linker region (318). This domain II–III cytoplasmic linker region in Ca,2.1 and Ca,2.2 channels has been shown to assemble with synaptic proteins such as syntaxin, SNAP-25, and synaptotagmin (135). Two Ca,2.2 splice variants, which lack larger portions of the domain II–III cytoplasmic linker region and including the synprint motif exhibit axonal targeting but lack clustering in presynaptic terminals (211, 318). The synprint motif could not direct the axonal targeting of dendritic Ca,1.2 when inserted into the Ca,1.2 interdomain II–III cytoplasmic linker suggested
that the synprint site is necessary but not sufficient to
direct targeting of Ca, channels to presynaptic sites (318).
Another study using exogenous expression of Ca,2.2
channels in cultured rat hippocampal neurons suggested
that synaptic targeting of these channels is dependent on
neuronal contacts and synapse formation (197). The cy-
toplasmic COOH terminus of Ca,2.2 channels also con-
tains consensus motifs for binding to PDZ and SH3 do-
mains that are both necessary and sufficient for Ca,2.2
axonal and synaptic targeting (197). The Ca,2.2b splice
variant lacks these motifs and does not exhibit axonal
localization (197). The COOH terminus of the Ca,2.2a
splice variant, which exhibits axonal and synaptic lo-
calization, contains these motifs and interacts with the
adapter proteins Mint-1 and CASK, both of which are
expressed in presynaptic nerve terminals. This suggests a
model whereby interaction with Mint-1 and CASK pro-
motes presynaptic recruitment of Ca,2.2 channels in hip-
 pocampal neurons (197).

However, another recent study suggested that deletion of the similar region in Ca,2.1
does not affect presynaptic targeting, indicating possible
differences in targeting of Ca,2.1 and Ca,2.2a channels to
axon and presynaptic terminals (124). Overall, the precise
molecular mechanisms underlying the axonal and presyn-
aptic targeting of Ca,2.1 and Ca,2.2 channels through
synprint-, Mint-1, CASK-mediate protein-protein interac-
tions, as well as the involvement of these cytoplasmic
COOH-terminal determinants are not completely defined.

Little is known of the molecular determinants and
mechanisms underlying somatodendritic targeting of
Ca,1.2, Ca,1.3, and Ca,3 channels in mammalian neu-
rons. One candidate is the auxiliary Ca,β2a subunit,
which in polarized epithelial cells directs the targeting
of Ca,2.1 to basolateral membranes (28, 75). Ca,1.3
colocalizes with the postsynaptic adapter protein
Shank, and these proteins directly interact via a motif
in the cytoplasmic COOH terminus of Ca,1.3 (383, 384).
However, the role of Shank interaction with Ca,1.3 on
its dendritic targeting is not known. Ca,1.2 is robustly
expressed in the growth cone of developing neurons,
yet upon neuronal maturation is targeted to the soma
and dendrites, suggesting that specific targeting ma-

chinery in different neuronal compartments changes
during neuronal differentiation (221). Presumably, dif-
ferential interaction of Ca,1.2 with as yet unidentified
protein(s) leads to a switch between growth cone and
somatodendritic targeting of Ca,1.2. A recent report
has suggested that calcium/calmodulin binding to the
cytoplasmic COOH terminus of Ca,1.2 channels regu-
lates the activity-dependent targeting of these channels
to distal dendrites; however, the precise mechanism
underlying this process is not known (348). Together,
these preliminary studies on somatodendritic targeting
of different Ca, channels warrant further detailed in-
vestigation and elucidation of the underlying mecha-
nism(s).

VII. CONCLUDING REMARKS

The intrinsic electrical properties and rapid process-
ing and transmission of synaptic signals in mammalian
neurons depend largely on the abundance and function of
a large repertoire of VDICs located at specific sites in
neuronal somata, dendrites, and axons. The remarkable
molecular complexity of VDIC principal and auxiliary
subunits leads to the generation of a remarkable diversity
of VDIC function critical to fine control of neuronal elec-
trical signaling. The selective placement of specific VDIC
types at precise locations in mammalian neurons, and
their dynamic regulation through local signaling path-
ways, allows for a complexity of neuronal function that
underlies brain function. However, the molecular com-
plexity of VDICs, the enormous cellular complexity of
mammalian brain, and the extreme morphological com-
plexity of neuronal form and function poses a consid-
erable challenge in understanding the specific role of indi-
vidual VDICs in brain function, and how the specific and
discrete subcellular compartmentalization of VDICs reg-
ulates signaling in mammalian neurons. Although molec-
ular and biochemical studies have begun to define the
cellular expression and subunit composition of native
VDICs, defining the spatial localization of VDICs compris-
ing specific subunit compositions remains an important
challenge, for both fundamentally understanding neu-
ronal function and validating specific VDICs as neurothera-
petic drug targets. The fundamental mechanisms that
lead to the observed distributions in the neuronal mem-
brane, and how these mechanisms are regulated during
development, with aging, and in response to normal and
pathological alterations in brain activity, have not yet
been elucidated and remain a major topic of ongoing
research.

ACKNOWLEDGMENTS

We thank Drs. Gary G. Matthews, Milena M. Menegola,
Matthew N. Rasband, and Kenneth J. Rhodes for numerous
contributions to defining VDIC localization and for sharing un-
published results. We also thank them and Drs. William A.
Catterall, Edward C. Cooper and Bernardo Rudy for graciously
granting permission to use published results herein.

H. Vacher and D. P. Mohapatra contributed equally to this
work.

Address for reprint requests and other correspondence:
J. S. Trimmer, Dept. of Neurobiology, Physiology, and Behavior,
College of Biological Sciences, 196 Briggs Hall, Univ. of Cal-
ifornia, One Shields Ave., Davis, CA 95616-8519 (e-mail:
jtrimmer@ucdavis.edu).

Physiol Rev • VOL 88 • OCTOBER 2008 • www.prv.org
GRANTS

The work from our laboratory that is discussed here was supported by National Institute of Neurological Disorders and Stroke Grants NS-34383 and NS-42225.

REFERENCES

9. Baranaukas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ. The work from our laboratory that is discussed here was supported by National Institute of Neurological Disorders and Stroke Grants NS-34383 and NS-42225.

75. Du J, Tao-Chang JH, Zerfas P, McBain CJ. The K$^{+}$ channel, Kv2.1, is apopotic to astrocytic processes and is associated with...

127. Hwang PM, Fotuhi M, Bredt DS, Cunningham AM, Snyder SH.
142. Kalman K, Nguyen A, Tseng-Crank J, Dukes ID, Chandy G,
143. Hugnot JP, Salinas M, Lesage F, Guillemare E, de Weille J,
Hu Q, Saegusa H, Hayashi Y, Tanabe T.
126. Inda MC, DeFelipe J, Munoz A.
Jan LY, Jan YN.
131. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber
130. Isacoff EY, Jan YN, Jan LY.
139. Jerng HH, Pfaffinger PJ, Covarrubias M.
140. Jentsch TJ, Schroeder BC, Kubisch C, Friedrich T, Stein V.
138. Jerng HH, Qian Y, Pfaffinger PJ.
137. Jerng HH, Pfaffinger PJ, Barres BA.
136. Jentsch TJ, Schroeder BC, Kubisch C, Friedrich T, Stein V.
Pathophysiology of KCNQ channels: neonatal epilepsy and progressive
144. Kamb A, Iverson LE, Tanouye MA. Molecular characterization of
Shaker, a Drosophila gene that encodes a potassium channel.
145. Kang MG, Chen CC, Felix R, Letts VA, Franklin WN, Mori Y,
Campbell KP. Biochemical and biophysical evidence for gamma 2
subunit association with neuronal voltage-activated Ca2+ channels.
146. Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR,
Barres BA. Differential control of clustering of the sodium channels
Nav1.2 and Na(v1.6) at developing CNS nodes of Ranvier.
147. Kavalali ET, Zhuo M, Bito H, Tsien RW. Dendritic Ca2+
channels characterized by recordings from isolated hippocampal
Autoradiographic localization of calcium channels with [125I]
149. Kerr LM, Yoshikami D. A venom peptide with a novel presynaptic
150. Khanna R, Roy L, Zhu X, Schlachter LC, K+ channels and the
microglial respiratory burst. Am J Physiol Cell Physiol 280: C796-
151. Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M.
Clustering of Shaker-type K+ channels by interaction with a family of
152. Kim E, Sheng M. Differential K+ channel clustering activity of
PSD-95 and SAP97, two related membrane-associated putative
Regulation of dendritic excitability by activity-dependent trafficking
of the A-type K+ channel subunit Kv4.2 in hippocampal neu-
154. Kim J, Wei DS, Hoffman DA. Kv4 potassium channel
subunits control action potential repolarization and frequency-dependent
broadening in rat hippocampus CA1 pyramidal neurons. J Physiol
Ito channels are octomeric complexes with four subunits of each
Kv4.2 and Kv4.3 channel-interacting protein 2. J Biol Chem 270:
156. Kim LA, Furst J, Gutierrez D, Butler MH, Xu S, Goldstein SA,
Grigorieff N. Three-dimensional structure of I(to); Kv4.2-KChIP2
channels by electron microscopy at 21 Ångstrom resolution.
157. Kito T, Ishida M, Fukuda K, Tsubokawa Y, Hiraoka N,
Nakano T, Miyazaki Y, Nakano H. Direct interaction and functional
coupling between metabotropic glutamate receptor subtype 1 and voltage-
158. Klahnauer N, Nacinova L, Marais E, Hobom M, Hofmann F.
Molecular diversity of the calcium channel alpha2delta subunit.
159. Koch RO, Wanner SG, Kosak A, Hanner M, Schwarzer C,
Kaczorowski GJ, Slaughter RS, Garcia ML, Kwan BP, CG.
Complex subunit assembly of neuronal voltage-gated K+ channels.
Basis for high-affinity toxin interactions and pharmacology. J
160. Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment Kv1
channels control axonal action potential waveform and synaptic
161. Koopmann TT, Bezzina CR, Wilde AA. Voltage-gated sodium
channels: action players with many faces. Ann Med 38: 472–482,
2006.
162. Krzemien DM, Schaller KL, Levinson SR, Caldwell JH. Immuno-
localization of sodium channel isofrom NaCh6 in the nervous
163. Kues WA, Wunder F. Heterogeneous expression patterns of mamil-
narian potassium channel genes in developing and adult rat brain.
164. Lai HC, Jan LY. The distribution and targeting of neuronal volt-
165. Lambe EK, Aghajanian GK. The role of Kv1.2-containing potas-
assium channels in serotonin-induced glutamate release from

187. MacKinnon Potassium channels R.

Neuronal Ion Channel Localization

317. Tiffany AM, Manganas LN, Kim E, Hsuyp EP, Sheng M, Trimmer JS. PSD-95 and SAP97 exhibit distinct mechanisms for regu-

Yunker AM, Sharp AH, Sundarraj S, Ranganathan V, Copeland TD, McEnery MW. Immunological characterization of T-type voltage-dependent calcium channel Ca(V)3.1 (alpha1G) and Ca(V)3.3 (alpha1H) isoforms reveal differences in their localization, expression, neural development. Neuroscience 117: 321–335, 2003.

