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Lynch, MA. Long-Term Potentiation and Memory. Physiol Rev 84: 87–136, 2004; 10.1152/physrev.00014.2003.—One
of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie
learning and memory formation. The past decade has seen remarkable progress in understanding changes that
accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent
pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized
animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and
technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models
used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP)
has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP
also underlie memory consolidation, significant advances have been made in understanding cell signaling events that
contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur
after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed.
The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with
a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on
memory/learning and LTP.
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I. INTRODUCTION

Learning may be described as the mechanism by
which new information about the world is acquired, and
memory as the mechanism by which that knowledge is
retained. It is convenient to categorize memory as being
explicit, which is defined as that involved in the conscious
recall of information about people, places, and things, or
implicit, which is characterized by the nonconscious re-
call of tasks such as motor skills. Explicit memory de-
pends on the integrity of temporal lobe and diencephalic
structures such as the hippocampus, subiculum, and en-
torhinal cortex. Implicit memory includes simple associa-
tive forms of memory, such as classical conditioning, and
nonassociative forms, such as habituation, and relies on
the integrity of the cerebellum and basal ganglia (582).

Although several areas of the brain play a part in con-
solidation of several forms of learning/memory (Table 1),
the hippocampus has been recognized as playing a vital
role in formation of declarative memory in particular,
which describes the synthesis of episodic and semantic
memories. The observations of Scoville and Milner in
1957 (556), showing that bilateral hippocampal removal
as a treatment for epilepsy suffered by patient H.M., re-
sulted in anterograde amnesia explicitly identified the
importance of the role of the hippocampus and temporal
lobe structures in memory. Since then, studies in humans
(e.g., Ref. 585) and animals (e.g., Refs. 427, 473) have
consolidated the essential finding of that study. More
recently, noninvasive methods using direct brain imaging
techniques such as magnetic resonance imaging and
positron emission tomography (PET) characterized blood
flow and oxygen use in the hippocampus and identified
fluctuations in these parameters during learning tasks
(e.g., Refs. 582, 584). This review focuses principally on a

discussion of synaptic plasticity in the hippocampus and
only briefly discusses synaptic plasticity in other areas.

A. The Hippocampus and Spatial Memory

One of the most compelling problems in neuro-
science is to identify the mechanisms underlying memory,
and although a great deal of progress has been made in
the past few decades, it remains a significant challenge.
Particular emphasis has been placed on analysis of
changes that accompany and support spatial memory be-
cause of its dependence on hippocampus and because of
the well-developed protocols that are available for its
analysis. A variety of paradigms are available for investi-
gation of spatial learning, and perhaps the most com-
monly used is the Morris water maze in which an animal’s
capacity to remember spatial cues is required to locate a
hidden underwater platform (426). Using this paradigm in
particular, numerous studies have identified an essential
role for the hippocampus in spatial learning; in addition,
several studies have built on the original observation of
O’Keefe which identified the involvement of specific hip-
pocampal pyramidal cells in encoding information about
the location of an animal in a particular space (471). Rats
with lesions of the hippocampal and parahippocampal
areas perform particularly poorly in spatial learning tasks;
in the case of the Morris water maze, although lesioned
and nonlesioned rats perform in a comparable manner
when the platform is visible, lesioned rats perform very
poorly when the platform is not visible. It appears that the
key role of the hippocampus in spatial learning is synthe-
sis of the configuration of spatial cues, which is governed,
at least to some extent, by temporal events (607). Signif-
icantly other forms of learning, like visual discrimination
and taste aversion, are not affected by hippocampal le-
sions.

A careful analysis of performance in different spatial
learning tasks has led to the suggestion that the integrity
of connections between the hippocampus, subiculum,
and cortical areas is necessary for synthesis of all com-
ponents of spatial learning. Monkeys with large bilateral
lesions of the medial temporal lobe, which approximated
the damage sustained by H.M., exhibited severe memory
impairment on the delayed nonmatching to sample task
(420, 663). Impairment was less severe when damage was
confined to the hippocampus compared with additional
damage to the perirhinal, entorhinal, and parahippocam-
pal cortical regions (33, 661–663, but see Ref. 444). Some
(104, 439), but not all (10, 286, 439), authors have reported
similar impairments in rats, but results are dependent on
the precise nature of the task and the extent of the lesion
(104).

Recognition memory can be investigated using the
visual paired comparison task, which assesses preference

TABLE 1. Several brain areas play a role in learning

and memory

Type of Learning/Memory Brain Areas Involved Reference No.

Spatial learning Hippocampus 33, 661
Parahippocampus 662, 663
Subiculum 427
Cortex

Temporal cortex
Area 47 573
Posterior parietal cortex 16

Emotional memory Amygdala 522
Recognition memory Hippocampus 484, 661

Temporal lobe 34, 35
Working memory Hippocampus 311

Prefrontal cortex
Motor skills Striatum 582

Cerebellum
Sensory (visual, auditory,

tactile) Various cortical areas 427, 595
Classical conditioning Cerebellum 484
Habituation Basal ganglia
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for exploring a new, compared with a familiar, object or
picture. It has been reported that performance in this task
is not impaired in amnesic patients with hippocampal
damage, provided there was no delay between the first
and second presentations of the stimuli; a deficit was
observed when a delay was introduced (404). This em-
phasizes the temporal component of hippocampal-depen-
dent memory referred to above. Similar impairments were
observed in monkeys with lesions of the temporal lobe
(35, 34) or hippocampus (484, 661). Data from the rat are
less clearcut (439; but see Ref. 586), and therefore, the
role of the hippocampus in recognition memory in mam-
mals requires further elucidation.

Although much emphasis has been placed on assess-
ing the role of hippocampus in memory formation, it is
acknowledged that most areas of the cortex are probably
capable of supporting various sorts of memory, for exam-
ple, visual sensory memory, auditory sensory memory,
and tactile memory; these are transient or temporary
memories, and consolidation is required to enable forma-
tion of long-term memory. It has also been shown, using
PET in human subjects, that spatial memory is associated
with differential activation in area 47 of the prefrontal
cortex (573) and that lesions of the posterior parietal
associative cortex lead to profound impairments (16).

Working memory, i.e., the ability to maintain and use
mental representation for goal-directed behavior, is de-
pendent not only on hippocampus but also on the pre-
frontal cortex, which has strong connections to the hip-
pocampus. The frontal cortex also plays a significant role
in the temporal ordering of spatial and nonspatial events
and the planning of responses, and the integrity of other
areas of the brain has been identified as being critical for
formation of specific memory forms. For instance, the
acquisition of motor skills and habits and the memories
associated with such skills (procedural memory) relies on
the integrity of the striatum and the cerebellum, while the
role of the amygdala in emotional memory has also been
recognized for many years. The recognition that several
areas other than hippocampus, particularly cortical areas,
play such an important part in various forms of memory
prompted anatomical studies, and therefore, hippocam-
pus-neocortical connections have been studied with great
interest. It has been shown that, in addition to the hip-
pocampal-prefrontal cortical connections which are
routed through the subiculum, CA1 projects directly to
the medial and orbital prefrontal cortices (40). The subic-
ulum also receives inputs from the postsubiculum and
entorhinal cortex, and it appears to play a role in process-
ing and integration of the information that it relays to
other cortical areas. These connections mean that the
subiculum receives positional, directional, sensory, and
contextual information. It has been shown that lesions of
this area lead to deficits in certain forms of learning (551).
In addition to the projection to subiculum, CA1 neurons

project to the perirhinal, postrhinal, and entorhinal corti-
ces, and a number of studies have suggested that these
pathways play a role in various forms of learning and
memory (472). Current evidence suggests that positional
information relies on hippocampal-subicular interaction,
directional information on the interaction between post-
subiculum and subiculum, and sensory information on the
interaction between entorhinal cortex and subiculum
(472; see below).

While recognizing the primary role of the hippocam-
pus in memory formation, the interaction with cortical
structures, particularly in the context of long-term storage
of memories, remains an issue of debate, and it has been
proposed that sequential activation of the hippocampus
and neocortex may be involved in consolidation of mem-
ory. One proposal is that although the hippocampus may
be largely responsible for recall of recent memories, the
neocortex is primarily concerned with recall of more
remote memories (582). This idea is linked with the view
that the hippocampus allows for rapid learning, permit-
ting the neocortex to undergo synaptic changes required
for slow learning. One prediction emanating from the
hypothesis that hippocampus and cortex are responsible
for maintenance of short- and long-term storage of mem-
ory, respectively, is that recall of distant memories would
be independent of the hippocampus and, consistent with
this, it has been reported that remote childhood memories
and general knowledge were not affected in individuals
with hippocampal damage. However, data from a recent
systematic study on individuals with lesions of the hip-
pocampus, in some cases extending to the temporal cor-
tex, revealed that the extent of the lesion (from that
affecting only the CA1, CA3, and dentate gyrus to that
involving the entire hippocampal complex and temporal
lobe) dictated the degree of impairment in recall and, to
some extent, the remoteness of the memory. The devel-
opment of neuroimaging techniques has allowed further
assessment of the role of the hippocampal complex in
retrieval of distant memories, and the evidence suggests
that activation of hippocampal circuits occurs even when
very remote memories are elicited (446).

Analysis of this question in animals has revealed that
sectioning the fornix, or damaging the hippocampus or
entorhinal cortex, typically impaired very recent memory,
but generally spared more remote memory. This suggests
that the hippocampus is necessary for memory storage
and retrieval for only a limited time after learning and that
time-related modification of cortical connections allows
for memory retrieval independent of the hippocampus
(583). However, it has been pointed out that this might
also be explained if representation of older memories was
more diffusely distributed in hippocampus. In this case,
temporally graded retrograde amnesia could be explained
because a partial lesion of the hippocampus will spare a
remote memory more than a recent memory, whereas
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complete hippocampal lesions will affect recent and re-
mote memories equally (445).

It is appropriate to state that while great emphasis
has been placed on the role of the hippocampus in spatial
memory, a number of studies have identified its impor-
tance in nonspatial memory tasks. For instance, in a
recent paper, using social transmission of food prefer-
ence, Clark et al. (104) reported the lesions of the hip-
pocampus and subiculum resulted in anterograde amne-
sia and temporally graded retrograde amnesia.

B. Synaptic Modifications and Memory

Activity-dependent synaptic plasticity plays a vital
role in sculpting synaptic connections during develop-
ment and has been identified in several synaptic path-
ways. Although it occurs, in particular, during critical
periods of early development, it is also a feature of the
adult brain. For example, it is widely accepted that mem-
ory formation is dependent on changes in synaptic effi-
ciency that permit strengthening of associations between
neurons; indeed, activity-dependent synaptic plasticity at
appropriate synapses during memory formation is be-
lieved to be both necessary and sufficient for storage of
information. Cajal (80) originally hypothesized that infor-
mation storage relies on changes in strength of synaptic
connections between neurons that are active. Hebb (221)
supported this hypothesis and proposed that if two neu-
rons are active at the same time, the synaptic efficiency of
the appropriate synapse will be strengthened. An enor-
mous effort has been channelled into understanding the
mechanism by which strengthening of synaptic connec-
tions can be achieved and, in this effort, the importance of
one model, above all others, cannot be overestimated; this
model is long-term potentiation (LTP).

In 1966, Lomo (340) reported that a single, short test
shock, following an initial period of conditioning test
shocks to the perforant path, elicited a potentiated re-
sponse in the dentate gyrus. The first full description of
LTP by Bliss and Lomo in 1973 (64) reported that trains of
high-frequency stimulation to the rabbit perforant path
caused a sustained increase in efficiency of synaptic
transmission in the granule cells of the dentate gyrus. This
report, and others which followed during the 1970s, con-
firmed the Hebbian nature of this form of synaptic plas-
ticity, and it was immediately recognized that the synaptic
changes that underpin certain forms of learning and mem-
ory may be similar to those upon which expression of LTP
relied. The three well-described characteristics of LTP,
cooperativity, associativity and input specificity (see Ref.
62), and the durability of LTP (8), have been identified as
solid arguments that support the hypothesis that LTP may
be a biological substrate for at least some forms of mem-
ory. Several other pieces of evidence have consolidated

this view. 1) LTP is most easily demonstrable in the
hippocampus, an area of the brain known to be funda-
mentally important in memory acquisition. 2) Rhythmic
bursts of activity that induce LTP mimic naturally occur-
ring theta rhythm recorded in the hippocampus during
exploratory behavior (132, 208, 313, 527). 3) Inhibitors of
hippocampal LTP also block hippocampal learning and
retention of tasks (425). 4) Several biochemical changes
that occur after induction of LTP also occur during mem-
ory acquisition (see below). However, a definitive demon-
stration indicating that memory consolidation requires
induction of changes that resemble those necessary for
induction of LTP remains elusive. Similarly, it remains to
be clearly shown that induction of LTP will result in some
form of memory consolidation.

At least two components of memory can be dis-
cerned: short-term memory, which endures for a few
hours, and long-term memory, which persists for several
days and often much longer. At the cellular level, the
storage of long-term memory is associated with gene
expression, de novo protein synthesis, and formation of
new synaptic connections. Consistently, protein synthesis
inhibitors can block persistent memory but leave short-
term memory unaffected, suggesting that stable, long-
lasting memories rely on gene activation that is triggered
at, or close to, the time of the experience. Here, there is an
interesting parallel between memory and LTP, since it has
been revealed that LTP consists of distinct phases involv-
ing different molecular mechanisms. The early phase (E-
LTP), which lasts 2–3 h, is independent of protein synthe-
sis, while more persistent long-lasting LTP (L-LTP), which
lasts several hours in vitro and weeks in vivo, requires
synthesis of new proteins.

A series of fundamentally important findings made in
the early 1980s profoundly affected the course of research
in LTP and which, for the first time, provided some insight
into the mechanisms by which LTP consolidation oc-
curred. The first of these was the observation that LTP in
CA1 was inhibited by the N-methyl-D-aspartate (NMDA)
antagonist 2-amino 5-phosphonopentanoic acid (AP5)
(107), and this, combined with the important discovery
that NMDA receptor activation led to influx of calcium
through a ligand- and voltage-sensitive calcium channel
(27), triggered significant advances in understanding the
cellular cascades initiated as a result of tetanic stimula-
tion. It was later established that the majority of synapses
which support LTP, in hippocampus and elsewhere, do so
in an NMDA receptor-dependent fashion (see below), but
that while the resultant increase in postsynaptic calcium
concentration was both necessary and sufficient for ex-
pression of LTP, NMDA receptor activation, although re-
quired in many cases, was not sufficient to result in its
induction (62).

Petersen et al. (493) addressed the question of
whether LTP at individual synapses was induced in an
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incremental manner or in an all-or-none manner. In this
clever series of experiments, a pairing protocol was used
which resulted in a small, nonsaturating amount of poten-
tiation combined with the use of minimal stimulation
techniques to activate single fibers. The data indicated
that individual synapses had different thresholds, but that
once threshold was achieved, the degree of potentiation
did not vary, indicating that synapses responded in an
all-or-none manner; potentiation was dependent on
NMDA receptor activation. It was also shown that, al-
though synapses exhibited a variation in the delay to
potentiation, once initiated the response was rapid. These
data led the authors to conclude that reaching threshold,
in circumstances in which background noise is consider-
able, requires coincident priming of pre- and postsynaptic
elements and suggested that this and the rapid onset of
response might be explained by autophosphorylation of
calcium/calmodulin kinase II (CaMKII) and the conse-
quent insertion into the membrane of AMPA receptors
(see below).

II. SEVERAL AFFERENT PATHWAYS SUPPORT

LONG-TERM POTENTIATION

In addition to the principal afferent pathways in the
hippocampus, several other afferent pathways have been
shown to sustain LTP (see Table 2). One that has been of
great significance in promoting the idea that synaptic
changes which underlie LTP may also underlie memory is
the projection from the thalamus to the amygdala.

A. The Amygdala

A great deal of evidence indicates that fear condition-
ing, which is a robust form of classical conditioning ex-
hibited by rodents, is amygdala dependent; specifically,

neuronal changes mediating the association between the
conditioned and unconditioned stimuli occur in the lat-
eral nucleus of the amygdala. Consistently, lesions of the
amygdala have also been shown to result in deficits in fear
conditioning (114, 200), while phthalic acid lesions of the
nucleus basilis magnocellularis, from which there is a
dense cholinergic projection to the basolateral amygdala,
have been shown to lead to a profound deficit in inhibi-
tory avoidance behavior (499). In humans, as well as
animals, activation of the amygdala has been shown to be
closely correlated with memory for both aversive and
pleasant stimuli (213).

A number of recent findings have led to the sugges-
tion that the amygdala is not a critical long-term informa-
tion storage site but that its role is to regulate memory
consolidation in other brain regions (401, 402). For in-
stance, if the amygdala is lesioned after training, fear-
motivated learning is partially retained while certain phar-
macological agents when administered following training
have been shown to modulate learning (641). It has been
concluded that the amygdala is the locus of control for
Pavlovian fear conditioning while its role in inhibitory
avoidance is to modulate activity of other brain areas
(641).

Compelling evidence supporting the hypothesis that
LTP represents a valid model for learning/memory has
proven to be an elusive goal, but recent analysis in the
amygdala has been of major significance. The amygdala is
the point of convergence of information from conditioned
and unconditioned stimuli and, when the conditioned
stimulus is an audible tone, the information is carried to
the lateral amygdala via the afferent input from the audi-
tory thalamus; this connection can express LTP (105).
Pairing this conditioned stimulus with foot shock (the
unconditioned stimulus) increases the response of amyg-
dalar cells to auditory stimulation, and this was shown to
be coincident with the animals exhibiting freezing behav-
ior. This enhanced response of the cells was persistent
and did not occur when the stimuli were unpaired (522).
Predictably neuronal activity in the lateral amygdala was
enhanced by the conditioned stimulus, and this preceded
behavioral responses (514); more recently, it was shown
that drugs that interfere with LTP in these pathways
disrupt behavioral fear conditioning (61). Thus, with re-
spect to at least one form of memory, a role for LTP has
been identified, and it is important to point out that LTP in
the amygdala shares several features with LTP in hip-
pocampus. For instance, it has been shown that it is
dependent on NMDA receptor activation, that retrieval of
fear memories requires protein synthesis (447), and that
activation of the transcription factor cAMP response ele-
ment binding protein (CREB) is a key element in consol-
idation of memory, including fear memory (see sect. VD).

In an effort to explain the persistent nature of con-
ditioning, it was proposed that the conditioned stimulus

TABLE 2. Several pathways support LTP

Auditory thalamus 3 amygdala (105)
Entorhinal cortex 3 dentate gyrus (64)
Mossy fibers 3 CA3 (348)
Commissural fibers 3 CA3 (see Ref. 62)
Schaffer collaterals 3 CA1 (107)
Hippocampus (CA1) 3 subiculum (110)
Hippocampus (CA1) 3 prefrontal cortex (141, 257)
Subiculum 3 prefrontal cortex (427)
Thalamus 3 layer IV cortex (227)
Mesocortical thalamic nucleus 3 medial prefrontal cortex (227)
Cortico-cortical pathways

Layer I 3 layer V (231)
Layer II 3 layer V (631)
Layer II/III 3 layer IV (215)

Cortex 3 striatum (medium spiny neurons; see Ref. 81)
Dorsolateral geniculate nucleus 3 visual cortex (229)
Parallel fiber 3 Purkinje neuron (see Ref. 343)

Reference numbers are given in parentheses.
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evokes excitatory postsynaptic potentials (EPSP) at sen-
sory input synapses onto pyramidal neurons of the lateral
amygdala and that this coincides with depolarization of
the same neurons by the unconditioned stimulus. As a
consequence of the depolarization, calcium influx through
NMDA receptor-associated channels occurs, amygdalar
neurons fire action potentials which back-propagate into
the dendrites, and this coincident activity, together with
the EPSPs generated by the conditioned stimulus, leads to
calcium entry through voltage-gated calcium channels. It
has been proposed that the increase in intracellular cal-
cium, consequent upon NMDA receptor-associated cal-
cium channel opening, underlies short-term fear memory
while the additional calcium entry through voltage-depen-
dent calcium channels is required for long-term memory
(61).

Both the hippocampus and entorhinal cortex receive
direct projections from basolateral amygdala (497), and
therefore, the recent reports indicating a modulatory role
of the amygdala on hippocampal LTP have not been sur-
prising. Activation of the basolateral amygdala has been
shown to enhance LTP in dentate gyrus (13, 245), but
lesions result in impaired LTP (244). Significantly, activa-
tion of the basolateral nucleus of the amygdala (within a
specific time window) has the capability of transforming
short-term potentiation in dentate gyrus of freely moving
rats into protein synthesis-dependent persistent LTP. The
authors found that this effect was independent of direct
activation of glutamatergic inputs and proposed that the
convergence of the action of a modulating transmitter as
a consequence of amygdalar stimulation and glutamater-
gic activation following perforant path stimulation was
necessary for consolidation of persistent LTP (167). In
parallel with its modulatory effect on LTP, amygdalar
activation has also been shown to enhance hippocampal-
dependent learning (214, 481, 524); however, LTP (and
short-term potentiation) in CA1 has been shown to be
reduced in slices prepared from rats that were previously
exposed to contextual fear conditioning (535).

Emerging evidence has indicated that an intact baso-
lateral amygdala underpins stress-induced modulation of
hippocampal LTP (290). Thus lesioning studies have re-
vealed that the inhibitory effect of stress on LTP is sup-
pressed in rats following electrolytic lesions of the amyg-
dala (290), while the poorer performance in spatial learn-
ing, which is induced by adrenalectomy (523-525) or
stress (290), is dependent on an intact amygdala. Simi-
larly, electrolytic lesions of the amygdala abrogated the
behavioral effect of stress induced by restraint and tail
shock (290). There is evidence that this modulatory role
of the amygdala involves activation of the projection of
the stria terminalis to the nucleus accumbens (523).

While the auditory thalamus projects to the lateral
amygdala, the mediodorsal thalamic nucleus projects to
the medial prefrontal cortex (mPFC); the latter pathway

has been shown to support both LTP and long-term de-
pression (LTD), and evidence favors the idea that learned
fear may be dependent on plastic changes at these syn-
apses. Thus it appears that extinction of learned fear is
associated with LTP in mPFC, while persistence of LTD
during extinction is coupled with a return of the learned
fear behavior (227).

B. The Visual Cortex and the

Somatosensory Cortex

It has been proposed that the mechanisms which
underlie LTP and LTD in visual cortex and somatosensory
cortex play a contributory role in experience-dependent
synaptic plasticity. In the case of the visual cortex, expe-
rience-dependent acquisition of visual responsiveness
during the critical period requires significant modification
of synaptic connections. Synaptic modification depends
on neuronal activity, and like LTP in visual cortex and
elsewhere (24), threshold stimulation in somatosensory
cortex is required to permit synaptic changes. A pivotal
role for NMDA receptor activation in LTP induction has
been described in both areas, and the profound modifica-
tions in synaptic plasticity that occur in early life have
been attributed to NMDA receptor subunit expression
which alters with maturity (50, 51, 162, 619). Significantly,
it has been shown that NMDA-sensitive LTP can be elic-
ited in the adult rat visual cortex in vivo by stimulation of
the dorsal lateral geniculate nucleus and that the cortical
response to visual stimuli is enhanced after LTP (229).
The physiological consequences of the enduring nature of
this form of plasticity remain to be established, but if it is
the case that experience-dependent plasticity and LTP
share common mechanisms, then deficits which occur as
a result of visual deprivation during the critical period
may be reversible in adulthood.

Development of the barrel cortex is a striking exam-
ple of synaptic plasticity that is dependent on experience-
dependent changes in thalamocortical circuits. Layer IV
of the rat somatosensory cortex has a topographic map
representing peripheral receptor density, formation of
which is exquisitely sensitive to receptor stimulation par-
ticularly during development. The thalamocortical syn-
apses of layer IV cortical cells support LTP (156), al-
though it is not clear whether LTP is involved in the
plasticity required for formation of topographic maps.
However, like use-dependent synaptic modification and
LTP in visual cortex, LTP in the developing barrel cortex
requires NMDA receptor activation (156), whereas inhibi-
tion of the NMDA receptor by AP5 blocks the functional
changes associated with mystacial whisker ablation in the
neonate (552). The role of the NMDA receptor has been
further underlined by the observation that formation of
cortical barrels is prevented in the absence of the NR1
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subunit in cortical neurons (253), although expression of
the NR2 subunit appears to be without effect on plasticity
in either visual cortex (495) or barrel cortex (344).

C. The Prefrontal Cortex

Training in an associative learning task was found to
be accompanied by enhanced synaptic transmission in
hippocampal-prefrontal cortical synapses (141); while
early changes in synaptic transmission in hippocampal
synapses were recorded, changes in prefrontal cortex
were delayed. This is consistent with the idea that the
hippocampus plays a special role in rapid learning and
acts in concert with the cortex to ensure stabilization of a
cortical representation of learned events. Restricted le-
sions of the prelimbic area of the prefrontal cortex sug-
gest that this area is critically involved in working mem-
ory (see Ref. 311).

Consolidation of the hypothesis that the cellular
mechanisms underlying LTP are necessary for memory
formation would be assisted if it could be shown that
pathways that are activated during memory formation
sustain LTP. The importance of hippocampal-prefrontal
cortex communication in cognition has been recognized
for many years (312, 314, 582), and one of the first de-
scriptions of LTP outside the hippocampus was made in
the hippocampal input to the prelimbic cortex in vivo
(141). LTP in this pathway has been reported several
times since the initial report (e.g., Ref. 257), and it has
been demonstrated that it requires NMDA receptor acti-
vation (257). Like LTP in hippocampus, there is emerging
evidence that activation of protein kinase A (PKA) at
these synapses leads to CREB activation (see Ref. 311).

In addition to the hippocampal-prefrontal cortical
pathway, other cortical pathways have also been shown
to support LTP. For instance, LTP can be induced in layer
V following stimulation of layer I (231) or layer II (631)
and in layer IV following stimulation in layer II/III (215).
Although NMDA activation is necessary for expression of
LTP in hippocampal-cortical synapses, characterization of
the mechanisms underlying LTP in cortico-cortical path-
ways remain to be clarified. For instance, some authors
have reported that NMDA receptor activation is required,
whereas others have disputed this (215, 226).

D. The Subiculum

In addition to the direct projections (40), some hip-
pocampal-prefrontal cortical connections are routed
through the subiculum (20), an area of the brain which
plays a role in processing and integration of information
that it relays to other cortical areas. Thus the circuits that
connect the subiculum to the presubiculum, the perirhinal
cortex, the entorhinal cortex, and the prefrontal cortex

have been identified as significant in particular forms of
memory and learning, for example, instrumental learning
(36), working memory (177), avoidance learning (178),
and visual, tactile, and spatial memory (427, 595, 662).
Significantly, several of these subicular pathways have
been shown to support LTP (110, 296). Perhaps the best
characterized is the CA1 to subiculum projection which
exhibits paired pulse facilitation and LTP in vivo (110,
472) and in vitro (296). Analysis of subicular unit firing in
a pellet-chasing task revealed the existence of place cells
in the subiculum, although the firing fields were less
discrete than those described in CA1 (471, 560). The
expression of synaptic plasticity and the evidence of a
representation of space in the subiculum, together with
the observations that lesions of the area lead to deficits in
spatial learning (427), indicate that, like the hippocampus,
the subiculum appears to play a significant role in learning
and memory.

III. MECHANISMS UNDERLYING

LONG-TERM POTENTIATION

A. NMDA Receptor Activation and LTP

The critical event leading to induction of LTP ap-
pears to be the influx of calcium ions into the postsynap-
tic spine and therefore, predictably, LTP is blocked by
injection of EGTA (352b) or BAPTA (433) and induction
occurs when the postsynaptic cell is loaded with calcium
(370). Therefore, it is agreed that elevation of postsynap-
tic calcium concentration is both necessary and sufficient
for the induction of hippocampal LTP (62).

In the majority of synapses that support LTP (in the
hippocampus and elsewhere), the postsynaptic increase
in calcium is mediated through activation of the NMDA
receptor. Several experimental approaches have been
used to consolidate the initial evidence which supported
this contention, and some of these are listed in Table 3.
Significantly, the characteristics of NMDA receptor acti-
vation eloquently explain the properties of LTP: receptor
activation leads to opening of the associated calcium
channel when occupied by glutamate and when the
postsynaptic membrane is depolarized. Therefore, the
NMDA receptor complex is dually regulated by ligand and
voltage and thereby acts as a coincidence detector. Con-
sistent with its pivotal role in LTP induction are numerous
demonstrations that inhibition of NMDA receptor activa-
tion blocks LTP. The first of these demonstrations in CA1
in vitro and dentate gyrus in vivo, using the specific
competitive NMDA receptor antagonist AP5 and the non-
competitive NMDA-associated channel blocker MK801
(106, 107, 153), was followed by several confirmatory
reports. With the exception of mossy fiber-CA3 synapses,
induction of LTP in all subfields of the hippocampus is
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NMDA dependent, although it has been shown that LTP in
CA1 can be induced without the participation of NMDA
receptors; in this case, the increase in postsynaptic cal-
cium concentration is a consequence of activation of
voltage-operated calcium channels, and therefore, cal-
cium channel inhibitors suppress this form of LTP (209).

NMDA activation alone does not induce LTP (280).
This observation, together with the demonstration that
thapsigargin, which depletes intracellular calcium stores,
inhibits LTP (72), suggests that calcium release from in-
tracellular stores augments NMDA receptor-mediated cal-
cium influx. Activation of the NMDA receptor may be
critical for induction of many forms of LTP, but it is not
necessary for all. In contrast, current evidence is consis-
tent with the hypothesis that a rise in intracellular calcium
concentration is a necessary element for the induction of
all forms of LTP described to date.

In parallel with the importance of NMDA receptor
activation in induction of LTP in hippocampus, it has been
repeatedly shown that AP5 markedly attenuates perfor-
mance in spatial learning tasks (e.g., Ref. 425), although it
is now clear that previous exposure to similar tasks alters
sensitivity to these inhibitors (see sect. IIIB). Activation of
NMDA receptors seems to be necessary not only for
acquisition of spatial information, but also for memory
retention (240).

The requirement for NMDA receptor activation is not
confined to plasticity in the hippocampus, since receptor
blockade leads to a deficit in long- and short-term memory
of fear conditioning (521, 634). Similarly, NMDA receptor
activation is necessary for induction of LTP in amygdala,
although LTP in amygdalar interneurons is NMDA inde-
pendent (376). In addition to the amygdala, experience-
dependent synaptic modifications and LTP in visual cor-
tex (50, 51, 162, 229, 619) and frontal cortex (257) rely on
activation of NMDA receptors.

Analysis of the subunit composition of the NMDA
receptor has revealed differential expression of NR1 and
NR2 with brain area, development, and activity (557, 637),
and gene targeting has allowed examination of some of
the physiological roles of the different subunits. Both
hippocampal LTP and spatial learning rely on expression
of NR2A, since disruption of this subunit is associated
with deficits in both (293, 539), while deletion of the gene
encoding NR2B also resulted in impairment of LTP in
hippocampus as well as impairment in development of the
barrel organ in the trigeminal complex (302, 321). Simi-
larly, mutant mice lacking NR2A exhibit normal re-
sponses in tone-dependent fear response (i.e., a hip-
pocampal-independent learned response) but exhibited
deficits in contextual fear learning (a hippocampal-depen-
dent response; Ref. 293); this finding discriminates be-
tween two forms of fear learning on the basis of their
dependence on hippocampal function. In addition to the
effects of disruption of NR2 subunits, genetic disruption
of the NR1 subunit also leads to impairments in LTP and
spatial learning (617, 618). Conversely, overexpression of
the NR2B subunit was found to be associated with en-
hanced LTP and enhanced learning and memory (604).
Analysis of the dynamics of different NMDA receptor
subunits has revealed that visual experience results in
insertion of new receptors with a higher proportion of
NR2A subunits, resulting in an increase in the ratio be-
tween NR2A and NR2B (505). One consequence of this is
that NMDA receptor-associated currents are shortened
and, therefore, conditions will favor induction of LTD
rather than LTP; this is consistent with the idea that an
LTD-LTP modification threshold monitors plasticity and
that this threshold alters with maturity (49).

B. NMDA Receptor Activation, Learning,

and Memory

A great deal of evidence indicates that NMDA recep-
tor activation plays an essential role in the acquisition of
spatial memories. The first data that addressed this ques-
tion were reported in 1986, when Morris et al. (425) found
that blocking the NMDA receptor with AP5 inhibited spa-
tial learning. The specific importance of the finding at that
time lay in the fact that this agent also inhibited LTP, and
therefore, this suggested an overlap in the mechanisms by
which LTP was sustained and by which spatial learning
was consolidated. Others, using genetically manipulated
mice, arrived at essentially the same conclusion; for ex-
ample, Tsien et al. (618) generated a mouse in which
NMDA receptor was knocked out in CA1 and they re-
ported that these mice exhibited impaired spatial mem-
ory, while nonspatial memory was intact, and this was
coupled with a deficit in LTP. Similarly, both spatial learn-
ing and LTP were impaired in mutant mice that lacked the

TABLE 3. Activation of NMDA-R and mGluR play a role

in LTP and learning/memory: some key findings

Receptor Role in LTP and Learning/Memory

NDMA NMDA antagonists inhibit LTP and spatial learning (107,
427)

NR2A disruption leads to attenuated LTP and impaired
spatial learning (293, 539)

NR2B disruption leads to attenuated LTP (302)
NR2B overexpression enhances LTP and spatial learning

(604)
mGluR ACPD enhances LTP (403)

ACPD induces potentiation of synaptic response (100)
mGluR type I antagonists block LTP and impair spatial

learning (23, 374)
mGluR-associated signaling increases following

induction of LTP (263, 346)
mGluR knockout mice exhibit impaired LTP (not in

mossy fiber 3 CA3) (348)

Reference numbers are given in parentheses.
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NR2A (�1) subunit (539). Conversely, overexpression of
the NR2B subunit yielded mice with enhanced LTP and
enhanced learning and memory (604, 605). These genetic
correlations between LTP and some forms of learning and
memory therefore support the initial findings of Morris et
al. (425). However, more recent studies have revealed that
inhibition of the NMDA receptor only impairs spatial
learning in task-naive animals, whereas pretraining in a
spatial task overcomes the inhibition induced by AP5 (39)
or another potent and specific NMDA antagonist,
NPC17742 (545), even when LTP in dentate gyrus was
inhibited. Interestingly, Bannerman et al. (39) reported
that pretraining in a nonspatial task induced a similar
effect. It was subsequently shown that pretraining in a
spatial learning task prevents disruption of a subsequent
training session in spatial learning after saturation of LTP
(478). It was concluded that all the components of spatial
learning (at least in the Morris water maze) do not require
NMDA receptor activation. In terms of the question of
uncoupling of spatial learning and LTP, it was proposed
that spatial learning can take place in the absence of LTP
provided episodic aspects of the training context are fa-
miliar.

C. Metabotropic Glutamate Receptors and LTP

The first indication of a possible role for metabo-
tropic glutamate receptors in LTP was in 1991 with the
observation that the nonselective mGluR agonist 1-amino-
1,3-cyclopentanedicarboxylic acid (ACPD) enhanced LTP
(403); these findings were subsequently replicated by
other groups (375, 512, 513). ACPD was later shown to
induce a long-lasting potentiation of the synaptic re-
sponse in CA1 (71, 72, 100, 374) and in the dentate gyrus
(464), and the effect was shown to rely on calcium-depen-
dent changes and on activation of protein kinase C (PKC),
since it was prevented by thapsigargin and staurosporine
(73). Although it has been reported that mGluR inhibition
blocks LTP, this is not a consistent finding (see Ref. 23),
and mutant mice have been generated in an effort to
identify the precise nature of the dependency of LTP on
mGluR activation. One study reported that LTP in CA1 of
these mice was unimpaired (111), but another reported
that it was blocked (11). Mutant mice lacking mGluR5
have been reported to show attenuated LTP induction in
CA1 and dentate gyrus, but LTP in mossy fiber-CA3 syn-
apses was spared, leading the authors to suggest that the
modulatory effect of mGluR activation on LTP differed in
NMDA-dependent and NMDA-independent pathways
(348). It was subsequently shown that potentiation of the
NMDA response was absent in mGluR5 mutant mice but
that potentiation of the AMPA response was preserved
(262); these findings led the authors to conclude that
activation of mGluR5 plays a pivotal role in expression of

NMDA receptor-dependent LTP. The impaired potentia-
tion of the NMDA receptor-associated response in
mGluR5 mutant mice has been identified as being PKC
linked, since it could be overcome by activation of PKC
(see Ref. 263). One proposed mechanism by which this
effect occurs involves PKC-induced activation of src,

which increases NMDA receptor-associated channel
opening (346), although an alternative substrate for PKC
may be homer, which couples mGluR5 to PSD 95 by
formation of a cluster with another postsynaptic density
protein, Shank (620). LTP has also been assessed in mu-
tant mice lacking mGluR1, and there is certain confusion
with respect to mossy fiber-CA3 LTP; one group reported
that LTP was absent in mutant mice lacking mGluR1
(111), but this was not supported by the findings of a
second group (234). Thus, although mGluR activation
appears to contribute to expression of LTP (see Table 3),
clarification of the roles of the different receptor groups is
necessary (for example, see Refs. 111, 234, and 382).

Several groups have shown that spatial learning is
dependent on mGluR activation (46, 70, 111, 348, 517),
and inhibitory avoidance and contextual fear learning
have also been shown to be dependent on receptor acti-
vation (11, 60, 103, 456). Specifically, the mGluR1 antag-
onist �-methyl-4-carboxyphenylglycine (MCPG) reduced
spatial learning, whereas a class I agonist trans-azetidine-
2,4-dicarboxylic acid (tADA) applied after learning facili-
tated memory recall (171, 510, 611). Consistently, 4-car-
boxyphenylglycine (4-CPG), a more selective class 1 an-
tagonist, which blocked LTP, also inhibited learning and
memory in some tasks (37). Consistent with these find-
ings is the observation that mGluR5 mutant mice exhib-
ited an impairment in spatial learning, as assessed by
performance in the Morris water maze, and also in con-
textual fear conditioning; both forms of learning are de-
pendent on an intact hippocampus (263). Interestingly, it
was also reported that there was a persistent increase in
mGluR5 expression after fear conditioning (511). This
role for mGluR5 in fear conditioning is consistent with
the earlier finding that 1-aminoindan-1,5-dicarboxylic acid
(AIDA) resulted in a retention deficit in conditioning to the
context but not the cue (103). In contrast to the change in
mGluR5 expression, Reidel et al. (511) reported that there
was no change in mGluR1 expression after fear condition-
ing, although an increase in mGluR1 mRNA has been ob-
served after induction of LTP in dentate gyrus (611).

IV. WHAT SIGNALING EVENTS FOLLOW

N-METHYL-D-ASPARTATE RECEPTOR

ACTIVATION?

A. A Role for CaMKII in LTP

When it was established that increased calcium con-
centration in the postsynaptic cell, as a consequence of
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NMDA receptor activation, was a critical factor in the
induction of LTP, attention turned to analysis of the
downstream cellular consequences of this increase.
Among the early findings was that postsynaptic entry of
calcium led to activation of CaMKII; this observation
turned out to be a finding of major importance. CaMKII is
one of the most abundant proteins in neurons comprising
1–2% of the total. Although it is expressed presynaptically
and postsynaptically, its expression is particularly high in
the postsynaptic density, where it is ideally located to
respond to changes in calcium concentration. There are
more than 30 isoforms of CaMKII and numerous sub-
strates, many of which are located in the postsynaptic
density (see Ref. 159). CaMKII appears likely to be a
mediator of primary importance in linking transient cal-
cium signals to neuronal plasticity.

In 1989, two groups reported the important finding
that inhibitors of CaMKII blocked LTP in CA1 (369, 373).
Since that time, the requirement for CaMKII activation in
expression of LTP has been confirmed many times using
many different approaches. Thus it has been shown that
CaMKII activation is triggered by the LTP-induced NMDA
receptor-driven increase in intracellular calcium and that
activation of the kinase persists after induction of LTP
(176, 479). This persistent activation of CaMKII occurs as
a result of autophosphorylation at Thr-286, and it has
recently been shown that if the kinase is mutated at this
residue (by replacement of threonine with alanine), then
autophosphorylation is prevented; in these circum-
stances, both LTP and spatial learning are impaired (194).
These findings and a range of related findings, specifically
those obtained from analysis of changes in transgenic
mice, provide convincing evidence that CaMKII activation
is necessary for expression of LTP. Significant among
these reports are the observations by Silva and colleagues
(570, 572), who demonstrated that deletion of the CaMKII
gene in mice resulted in impairment in LTP and also
impairment in spatial memory. Similarly, introduction of
an activated calcium-independent form of CaMKII into
CA1 neurons potentiated synaptic transmission and oc-
cluded LTP (219, 337, 494). However, LTP in CA1 in
transgenic mice expressing a constitutively active cal-
cium-independent mutant form of CaMKII (�-CaMKIIT286A

mice) was similar to that in wild-type mice (388, 389), a
surprising result if it is argued that CaMKII alone is suf-
ficient to induce LTP. It was established that, in these
mice, the threshold to induce LTP was increased, while
the threshold to induce LTD was reduced, suggesting that
the extent of activation of CaMKII was important in mod-
ulating the response to stimulation. These findings were
elaborated upon and clarified in a recent study. Using
transgenic mice in which the level of transgene expres-
sion was regulated, Bejar et al. (53) reported that expres-
sion of the transgene was associated with significant im-
pairments in contextual fear conditioning and in spatial

memory. The authors also reported that the level of ex-
pression of the transgene was important; significantly,
LTP, induced by 5-Hz stimulation, was enhanced in mice
expressing low levels of the transgene but was markedly
depressed in mice expressing high levels of the transgene
(53). The idea that the degree of stimulation of CaMKII
may have a modulatory effect on plasticity has also been
addressed in another study. In this case it was proposed
that CaMKII may act as a memory molecule. Thus a strong
stimulus can prime CaMKII so that subsequent stimuli can
lead to greater association with the postsynaptic density
(562).

The requirement for CaMKII activation in expression
of LTP is therefore generally accepted, and there is strong
evidence suggesting that activation of CaMKII is sufficient
to induce LTP. Evidence favoring the view includes the
demonstration that injection of a constituitively active
form of CaMKII induces LTP (337, 494). A similar conclu-
sion was drawn in experiments that used occlusion to
address the question; thus cells that exhibited synaptic
potentiation induced by CaMKII were insensitive to te-
tanic stimulation, and vice versa (335). Perhaps the most
powerful arguments used to support the view that CaMKII
is sufficient to induce LTP have been developed on the
back of the “silent synapse” theory of LTP (see below).
The increase in responsiveness to applied glutamate fol-
lowing LTP, which is due largely to increased AMPA
conductance, is a consequence of CaMKII-induced phos-
phorylation of GluR1 on Ser-831 (125), and it has been
proposed that this contributes to the LTP-associated in-
crease in conductance (120). Of importance is the obser-
vation that the increase in GluR1 phosphorylation that
accompanies LTP is inhibited by CaMKII antagonists. In
addition, there is now compelling evidence to suggest that
delivery of AMPA receptors to the spine after induction of
LTP, allowing the transition from silent to nonsilent re-
ceptor, is closely linked with, and may even be dependent
on CaMKII activation (324, 564, 565; see below and see
Fig. 1).

In addition to the pivotal role for CaMKII in LTP,
evidence has been emerging which suggests that CaMKIV
may also play a role. CaMKIV, which is localized predom-
inantly in neuronal nuclei, modulates CREB-regulated
gene expression during LTP in CA1. Its activity is tran-
siently increased after induction of LTP and is accompa-
nied by increased phosphorylation of the transcription
factor, CREB, and increased expression of the immediate
early gene c-fos (275). Transgenic mice, in which the
expression of a dominant-negative form of CaMKIV was
restricted to the postnatal forebrain, exhibited a deficit in
L-LTP but not E-LTP. In parallel with the impairment in
LTP, CREB phosphorylation and c-fos expression were
significantly attenuated in these mice (274).

Identification of the cellular events leading to activa-
tion of CaMKII after NMDA receptor activation has been
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a subject of intense interest. CaMKII binds to several
postsynaptic density proteins including �-actinin and
PSD95 and the synaptic adhesion molecule, densin-180.
CaMKII activation has also been shown to lead to phos-
phorylation of microtubule-associated protein 2 (MAP2)
and neurofilament L, both of which play a role in cytoskel-
etal regulation; on the basis of these findings, it has been
proposed that CaMKII activation may contribute to the
morphological changes that accompany the more persis-
tent components of LTP (see below). However, it is im-
portant to recognize that there are several CaMKII sub-
strates on the presynaptic side of the synapse; these
include synapsin, synaptotagmin, and synaptophysin,
which play a role in neurotransmitter release. The signif-
icance of this is that LTP, at least in dentate gyrus, has
been coupled with enhanced transmitter release (see
Refs. 62, 353). On the postsynaptic side of the synapse,
current evidence suggests that NMDA receptor activation
leads to translocation of CaMKII from dendrites, where it
is associated with actin, to the postsynaptic density; it has
been proposed that this requires calcium but not auto-
phosphorylation (159). It seems that binding to the NR2B
subunit occurs and that this leads to increased associa-
tion of calmodulin with CaMKII and, subsequently, an
increased association with the postsynaptic density (48).

B. A Role for CaMKII in Learning/Memory

In parallel with the finding that CaMKII activation is
necessary for induction of LTP, several studies have indi-

cated that activation of CaMKII is required for consolida-
tion of various forms of memory. For instance, heterozy-
gote mice in which CaMKII expression was reduced by
�50% exhibited normal hippocampal-dependent memory
initially after training, but it was reported that memory
10–50 days after training was significantly impaired (164).
Similarly, spatial learning has been shown to be impaired
in �-CaMKIIT286A mice (194). Interestingly, hippocampal
place cells are unstable in �-CaMKIIT286A mice, and it has
been proposed that this may significantly impact on spa-
tial learning (101, 335). The situation with respect to a role
for CaMKIV in memory requires clarification. One report
has indicated that the deficit in LTP in CaMKIV transgenic
mice was correlated with an impairment in long-term
memory (i.e., consolidation/retention rather than acquisi-
tion; Ref. 274), but it has also been reported that targeted
gene disruption of CaMKIV, which resulted in impaired
LTP in CA1 coupled with impaired CREB phosphoryla-
tion, was not associated with any evidence of deficits in
spatial learning or memory (232).

The dependence of plasticity in the somatosensory
cortex on CaMKII activation has been assessed by dele-
tion of CaMKII and by assessing changes in �-CaMKIIT286A

mice. Both sets of animals failed to exhibit plasticity, and
both were incapable of sustaining LTP (164, 196). These
coupled findings suggest that this form of plasticity may
be reliant on molecular changes that contribute to main-
tenance of LTP. A similar argument has been advanced
with respect to plasticity in the visual cortex. In this case
also, experience-dependent synaptic plasticity is mark-

FIG. 1. Among the consequence of
the increase in intracellular Ca2� concentra-
tion ([Ca2�]i) which accompanies N-methyl-
D-aspartate receptor (NMDA-R) activation
is increased calmodulin kinase II
(CaMKII) activity which exerts multiple
actions. One significant effect is in-
creased AMPA conductance as a result
of AMPA receptor (AMPA-R) phosphor-
ylation and increased recycling of
AMPA-R, which is due to CaMKII-in-
duced changes in cytoskeletal proteins
(see text for details). NSF, N-ethylmale-
imide-sensitive factor.
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edly attenuated in �-CaMKIIT286A mice (597). Consistent
with the idea that CaMKII activation plays a role in fear
conditioning, as it does in spatial learning, are the obser-
vations that transgenic animals with regulated expression
or deficits of CaMKII demonstrate impairments in fear
conditioning (571, 638), while fear conditioning is blocked
by the CaMKII inhibitor KN62 (648). CaMKII activation
also appears to play a role in other forms of learning. Thus
intrahippocampal infusion of the CaMKII inhibitor KN62
caused full retrograde amnesia of inhibitory avoidance
learning in rats, when given immediately, but not three or
more hours after training (600), while activity of CaMKII
was increased after training rats in a one-trial inhibitory
avoidance task (see Ref. 254). Interestingly, an increase in
the phosphorylation state of CREB in the hippocampus
has been described after inhibitory avoidance training
(57), and this finding, together with the observation that
inhibition of CaMKII by KN62 prevents induction of the
immediate early genes zif268 and c-fos (577), provides an
insight into mechanisms underlying the enduring nature
of CaMKII-dependent learning.

The data obtained from the study of synaptic plastic-
ity in CaMKII knockout mice has, to a large extent, been
paralleled by data in other organisms; the clear message is
that several models expressing various forms of synaptic
plasticity exhibit a requirement for CaMKII activation. For
instance, CaMKII knockout in Drosophila exhibits im-
paired associative learning, but motor and sensory sys-
tems remain unaffected (265). Similarly, knockout of
unc43 (the CaMKII analog in Caenorhabditis elegans)
affects the stability of synapses and general neuronal
behavior, ultimately affecting function of olfactory neu-
rons (536).

C. AMPA Receptors and LTP

The importance of AMPA receptors in fast excitatory
synaptic transmission has been acknowledged for de-
cades, and because of this, it has been recognized that
modulation of AMPA receptor activity could significantly
contribute to expression of LTP. The production of mu-
tant mice expressing different receptor subunits provided
some insight into the role of AMPA receptors, particularly
in relation to control of calcium fluxes. Calcium entry is
modulated by the GluR2 subunit of the AMPA receptor;
specifically, high expression of GluR2 mRNA has been
correlated with low calcium entry (186). Predictably,
AMPA receptors assembled from GluR2 subunits, in con-
trast to those assembled from GluR1, GluR3, or GluR4
subunits, are impermeable to calcium ions (186). Thus
AMPA receptor-associated calcium permeability is low in
pyramidal and granule cells of the hippocampus where
there is a relatively high expression of GluR2-containing
AMPA receptors. LTP was found to be enhanced in GluR2

mutant mice (261), whereas LTP was markedly attenu-
ated in mice lacking the GluR1 subunit (423); specifically,
LTP in dentate gyrus was recorded, albeit attenuated, in
GluR1 knockout mice, but it could not be induced in area
CA1 (659).

A great deal of evidence has suggested that increased
expression of AMPA receptors on the postsynaptic mem-
brane is likely to be the primary requirement leading to
expression of LTP. The initial finding suggesting that
postsynaptic glutamate receptor expression might be
modulated after induction of LTP came from analysis of
LTP-associated changes in sensitivity of CA1 neurons to
ionophoretically applied glutamate receptor ligands. The
data indicated a slow increase with time after LTP induc-
tion (120), suggesting that LTP increased the sensitivity,
or the number, of receptors. Subsequent evidence re-
vealed that increased receptor number was responsible
for this finding. The primary work leading to the develop-
ment of the so-called silent synapse theory of LTP was
initiated with the recognition that certain synapses were
functionally silent because of a lack of AMPA receptors,
although NMDA receptors were present (252, 323). Thus
when single connections between CA3 axons and CA1
pyramidal cells were assessed, only NMDA receptor-gen-
erated excitatory postsynaptic currents (EPSCs) could be
elicited in a proportion of CA1 pyramidal cells; however,
stimulus paradigms that induced LTP resulted in the re-
cruitment of AMPA receptor-generated responses (252,
323). This was interpreted as evidence that AMPA recep-
tors were inserted into the postsynaptic membrane after
induction of LTP. Since then, a great deal of evidence has
been accumulated indicating that AMPA receptor expres-
sion on cells is a dynamic process and is controlled by a
cycle of exocytosis and endocytosis (351, 372). It has also
been repeatedly shown in cultured cells that this cycle is
modulated by NMDA receptor activation which leads to
increased recruitment of AMPA receptors and increased
AMPA-mediated miniature EPSPs (324, 345, 565). Lu et al.
(345) reported that the punctate expression of GluR1
which colocalized with synaptophysin was consistent
with synaptic localization of the AMPA receptors. They
further reported that activity-dependent expression of
these receptors was blocked by NMDA receptor inhibi-
tion, by sequestering calcium in the cells using BAPTA or
by application of tetanus toxin which inhibits exocytosis
by cleaving vesicle-associated membrane protein
(VAMP), the SNARE protein which is necessary for exo-
cytosis.

It appears that there is a fairly constant turnover of
AMPA receptors containing GluR2/3 subunits at the syn-
apse and that delivery is dependent on their interaction
with a number of cytoskeletal proteins including N-ethyl-
maleimide-sensitive factor (NSF; Refs. 458, 579). In con-
trast, GluR1-containing AMPA receptors are inserted into
dendritic spines in an activity-dependent manner, and this
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is associated with CaMKII activation and requires an in-
teraction with a different family of postsynaptic density
proteins (type II PDZ domain proteins; Refs. 496, 564).
Indeed, it has been reported that activation of CaMKII
drives synaptic incorporation of GluR1 subunits (see Ref.
578); however, it appears that the substrate protein is the
PDZ domain protein that complexes with GluR1 to allow
membrane insertion (220; see Fig. 1). In a recent study, it
was shown that brain-derived neurotrophic factor
(BDNF) may induce the accumulation of AMPA receptors
at synapses previously devoid of these receptors, as has
been proposed for silent synapses (406). Interestingly,
while LTP has been linked to an increase in redistribution
of AMPA receptor leading to increased membrane expres-
sion, there is also some evidence that NMDA receptor-
dependent LTD is associated with a decrease in the pro-
portion of surface-expressed synaptically localized GluR1
subunits (88).

Several groups have reported that induction of LTP is
dependent on development; neonatal rats, up to postnatal
day 8, are incapable of sustaining LTP, but this inability
disappears shortly afterwards (47, 78, 147). In an interest-
ing parallel it has been established that silent synapses
demonstrate a developmental profile; thus the number of
synapses expressing NMDA, but not AMPA, receptors in
the hippocampus decreases with age (325).

Evidence for conversion of silent to functional syn-
apses in plasticity associated with development has been
accumulating, and the presence of silent synapses in de-
veloping cerebellar granule cells, which disappear as de-
velopment progresses, has been documented recently
(343). Similarly, during the so-called critical period, many
thalamocortical synapses exhibit NMDA-, but no detect-
able AMPA-generated, receptor currents, suggesting the
presence of functionally silent receptors. It has been pro-
posed that LTP may lead to conversion of thalamocortical
synapses from silent to functional and that this is funda-
mental in modulation of experience-dependent changes in
thalamocortical circuits (156, 251). Silent synapses have
also been identified in immature pyramidal neurons in the
neonatal rat visual cortex, and these decrease during
early postnatal development; the evidence suggests that,
in this area also, the conversion from silent to functional
synapses is dependent on NMDA receptor activation and
occurs as a consequence of LTP-like activity (533).

D. Silent Synapses, Learning, and Memory

The initial findings that indicated an increase in
AMPA receptors sensitivity after LTP induction sparked
some parallel investigations in tissue prepared from ani-
mals that underwent training of various sorts. Thus Tocco
et al. (613) reported that AMPA receptor binding was
increased after training in a classical conditioning para-

digm, but that no parallel change was observed in NMDA
receptor binding. While facilitation of AMPA-mediated
responses was shown to improve memory (204, 588),
inhibition resulted in retrograde amnesia of inhibitory
avoidance training in rats (82, 84, 260). A rapid and selec-
tive increase in the density of AMPA receptors in the
hippocampus was also reported after training (82, 84),
and recent evidence has indicated that this increase in
binding reflected enhanced GluR1 expression (83). It was
also shown that training led to a time-dependent increase
in expression and activity of CaMKII and that this was
accompanied by increased AMPA binding in hippocampal
synaptosomal membranes and by increased GluR1 sub-
unit phosphorylation (83).

V. INDUCTION OF LONG-TERM POTENTIATION

ACTIVATES SEVERAL CELL

SIGNALING CASCADES

Since the 1980s, many groups have concentrated
their efforts with a view to identifying the signaling path-
ways that enable LTP to be sustained, and for several
years a great debate continued about whether changes
occurred presynaptically, postsynaptically, or both. It ap-
pears to this author that the predicted outcome, i.e., that
changes occur on both sides of the synapse, has long been
realized, and the following sections and Table 4 attempt
to highlight at least some of the changes reported.

A. cAMP

Several studies have indicated that LTP is dependent
on a cascade of cellular signaling events that are stimu-
lated by an increase in intracellular cAMP concentration;
these events include activation of PKA, which leads ulti-
mately to activation of transcription factors such as CREB
and translation. It has been shown that cAMP concentra-
tion and PKA activation are enhanced after induction of
LTP and that LTP is inhibited by activators of PKA.

Earlier experiments tended to focus on the role of
cAMP/PKA in stimulating changes responsible for sustain-
ing the more persistent components of LTP, and this was
mainly as a consequence of studies conducted by the
Kandel group (236). For instance, it was shown that de-
livery of one high-frequency train (100 Hz) induced LTP
that persisted for 1–3 h; this was inhibited by inhibitors of
CaMKII but was not affected by PKA inhibitors or protein
synthesis inhibitors. In contrast, delivery of three high-
frequency trains of stimuli was shown to induce LTP that
persisted for between 6 and 10 h, and this was blocked by
a PKA inhibitor (236). Similarly, late-phase LTP in per-
forant path-granule cell synapses was shown to be inhib-
ited by the PKA inhibitor Rp-cAMPS and mimicked by the
adenylate cyclase activator forskolin (453), while the pro-
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tein synthesis inhibitor emetine exerted the same effect as
Rp-cAMPS (453). This latter observation, as well as earlier
observations which pinpointed the coincident timing of
the effects of protein synthesis inhibitors and PKA inhib-
itors, suggested that the effects might be coupled and
therefore led to the proposal that the primary effect of
PKA was to stimulate protein synthesis. These findings
were backed up by observations made in transgenic mice
that express R(AB), an inhibitory form of the regulatory
subunit of PKA. In these mice, in which PKA activity is
markedly reduced, L-LTP was decreased in area CA1, but
no effect on the early phase of LTP was observed (3).
However, some evidence has suggested that PKA may
also play a role in early LTP. For example, PKA was
transiently activated 2 and 10 min after induction of LTP
in CA1 of the hippocampus, but there was no evidence of
a persistent change, suggesting that its role was confined
to earlier, rather than later, events (520); it was proposed
that this was a consequence of NMDA receptor activation
and subsequent activation of calmodulin-dependent ad-

enylyl cyclase (649). A role for PKA in early LTP was also
proposed by Otmakhova et al. (477) on the strength of
their observation that application of the PKA inhibitor
H-89 suppressed the early LTP induced by a single tetanus
and that LTP induced by a pairing protocol was decreased
by intracellular perfusion of the peptide PKA inhibitor
PKI(6O22) amide.

It had been assumed that the primary, and possibly
sole, action of cAMP is to activate PKA, but a recent
report requires this idea to be revisited. Perfusion of the
cAMP analog Rp-cAMPS into CA1 pyramidal cells after
induction of LTP decreased the amplitude of the synaptic
response in a dose-dependent manner, and the expecta-
tion was that this effect was due to its reported inhibitory
action on PKA. However, the effect was not mimicked by
a specific PKA inhibitor, which suggested a novel action
of cAMP (476); these authors proposed that the rapid
cAMP-dependent stimulation of the BDNF receptor TrkB
may lead to BDNF-dependent synaptic potentiation in

TABLE 4. LTP-induced signaling cascades are activated presynaptically and postsynaptically

Presynaptic Changes Postsynaptic Changes

CaMKII Increased CaMKII phosphorylation of synapsin I (175, 449)
and MAP2 (175) with LTP

CaMK inhibitors block LTP (369, 373)
Injection of Ca2�-independent CaMKII blocks LTP

(220, 337, 494)
Injection of constitutively active CaMKII induces LTP

(337, 494)
cAMP LTP activates PKA presynaptically (615)

Inhibition of PKA presynaptically blocks LTP (330)
Inhibition of cAMP blocks LTP (236, 476, 477)
Expression of R(AB) inhibits LTP (3)
Forskolin enhances LTP (453)
LTP activates PKA postsynaptically (248, 520)

Tyrosine kinase Phosphorylation of substrates (synapsin, PLC-�, TrkA, TrkB)
increased with LTP (198, 366, 396, 436)

Genistein inhibits LTP by acting presynaptically (90)

Phosphorylation of substrates (NR2B) increased with
LTP (528, 531)

Inhibition of tyrosine kinase blocks LTP (239, 465)
LTP enhances phosphorylation of CAKbeta/Pyk2 (239)
Src activation accompanies LTP; Src inhibition blocks

LTP (349)
Fyn knockouts exhibit impaired LTP (205)

ERK Inhibition of ERK blocks LTP (397)
LTP enhances ERK activation presynaptically (90, 198, 199,

366, 397)
ERK modulates LTP-associated release (90, 198, 199, 366)

Inhibition of ERK blocks LTP and signaling
postsynaptically (123, 151)

LTP enhances ERK activation (123, 248)
ERK substrates are activated following LTP (9, 123,

248)
CREB LTP activates CREB presynaptically (198) LTP and CREB activation inhibited in tandem (123,

247, 554)
LTP is blocked in CREB knockout mice (74)
LTP increases CRE-mediated gene expression (247)

PI 3-K LTP activates PI 3-K (282)
PI 3-K inhibitors block LTP and LTP-associated signaling

presynaptically (282)

PI 3-K inhibitors block LTP (541)

PKC LTP stimulates PKC (394)
LTP stimulates phosphorylation of PKC substrates (408, 506)

Inhibition of PKC blocks LTP (369, 373)
LTP is associated with activation of PKC (331)
LTP stimulates phosphorylation of PKC substrates

(506, 578)
Protein synthesis LTP in DG stimulates protein synthesis in EC (90, 198, 285)

LTP enhances synthesis of synaptic vesicle proteins (359)
Protein synthesis inhibitors block LTP and presynaptic

signaling (435)
LTP induces presynaptic morphological changes (25, 79, 413)

LTP stimulates protein synthesis postsynaptically (450,
480)

Protein synthesis inhibitors block LTP (474, 587)
LTP induces postsynaptic morphological changes (79,

126, 157, 188, 190, 555)

CaMKII, calcium/calmodulin kinase II; PI 3-K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PKA, protein kinase A; PLC-�, phospho-
lipase C-�. Reference numbers are given in parentheses.
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CA1 which has been reported by several groups (see
below; Ref. 486).

Transgenic mice in which PKA activity is decreased
[because they express R(AB); see above], and which ex-
hibited an impairment in L-LTP, also exhibited deficits in
spatial memory, indicating that PKA plays a critical role in
the consolidation of at least this form of memory (3). In
support of a requirement for PKA activation in other
forms of memory, it was demonstrated that long-term, but
not short-term, contextual fear memory was also im-
paired in these mice. Consistently, activation of PKA was
shown to accompany contextual fear conditioning while
Rp-cAMPS inhibits both LTP in amygdala and long-term
contextual fear memory (547–549). Similarly, investiga-
tion of L-LTP in the cortico-amygdala and the thalamo-
amygdala pathways revealed the predicted dependence
on gene expression and on new protein synthesis; these
changes were mediated by activation of PKA as demon-
strated by the ability of forskolin to induce LTP in both
pathways (238). Interestingly, mice that were maintained
in an enriched environment and exhibited enhanced LTP
also showed improved memory for contextual, but not
cued, fear conditioning. These data suggest that exposure
of mice to an enriched environment may alter signaling
through PKA and consequently may modulate synaptic
plasticity (144).

The dependence of different forms of plasticity on
cAMP/PKA is a recurring and unifying theme. For in-

stance, the plasticity induced in the visual cortex as a
consequence of monocular deprivation has been shown
to be inhibited by the PKA inhibitor Rp-8-Cl-cAMPS (52),
while a role for cAMP has been identified in experience-
dependent synaptic modification in the somatosensory
cortex (1). The reliance of various forms of synaptic
plasticity on cAMP/PKA-induced cell signaling cascades
also transcends the species. Thus long-term facilitation in
Aplysia has been shown to be PKA dependent (55) while
PKA activation has been linked with learning/memory in
Drosophila (121), with context signal learning in the crab
(338) and with associative learning in honeybees (438).

B. ERK

Among the downstream consequences of an increase
in cAMP concentration is activation of the mitogen-activated
protein kinase (MAPK/ERK); in the case of Aplysia, in-
creased intracellular cAMP triggered nuclear translocation
of MAPK (381), while cAMP also activated ERK in hip-
pocampus (248). It has recently been shown that this effect
in hippocampus may be mediated through cAMP-stimula-
tion of TrkB, which in turn activates ERK (486). Consis-
tently, PKA activation by forskolin was shown to strongly
activate ERK2 in hippocampal area CA1 while its effect on
ERK1 was slight (9). However, it has become clear in the
past 10 years or so that ERK activation can be stimulated in

FIG. 2. ERK appears to act as a point of
convergence for several signaling cascades. The
multiple and varied substrates of ERK predict
the array of changes that follow its activation
(see text for details). PLA2, phospholipase A2;
PKA, protein kinase A; PKC, protein kinase C;
PI-3K, phosphatidylinositol 3-kinase.
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many ways and can exert numerous effects because of its
multiple substrate proteins (see Fig. 2 and below).

The important role of ERK in expression of LTP was
first underscored by the finding that its inhibition resulted
in suppression of LTP in CA1 (151, 248) and dentate gyrus
(397). Consistently, it was shown that induction of LTP in
the dentate gyrus in vivo led to rapid phosphorylation of
MAPK/ERK (123, 151, 397; Fig. 3). ERK activation has
been shown to be involved in both early- and late-phase
hippocampal LTP; thus pretreatment with the MEK inhib-
itor PD98059 exerted an inhibitory effect on the early and
later responses to tetanic stimulation (397; Fig. 3). It was
proposed that this may be due to ERK-stimulated phos-
phorylation of potassium channels or synapsin I. To ex-

plain the rapid effect of ERK, attention focused on the
finding that the potassium channel Kv4.2 is one of its
substrate proteins. It seems likely that ERK regulation of
Kv4.2 activation plays an important role in LTP; specifi-
cally a decrease in voltage-dependent activation of Kv4.2
would lead to increased excitability, enhancing LTP (9,
596). Synapsin I has been identified as a substrate for ERK
(270, 384) as well as for cAMP-dependent kinase and
CaMKII (207), and its phosphorylation by ERK has been
shown to reduce synapsin-actin bundling, an action which
is considered to induce vesicle movement to the active
zone, increasing the likelihood of vesicle fusion (207).
One expected consequence of this is an increase in trans-
mitter release; consistently, it has been shown that KCl-

FIG. 3. Long-term potentiation (LTP)
in perforant path-granule cell synapses in
urethane-anesthetized rats was inhibited
by the Trk inhibitor tyrphostin AG879
(A), the MEK inhibitor PD98059 (B), and
the PI 3-kinase inhibitor wortmannin (C).
Whereas ERK activation was signifi-
cantly enhanced in synaptosomes pre-
pared from tetanized dentate gyrus ob-
tained from saline-treated rats [P � 0.05;
ANOVA; n � 6; compare lane 2 (teta-
nized) with lane 1 (untetanized) on the
sample immunoblot], treatment with ei-
ther tyrphostin AG879 (B) or PD98059
(D) inhibited this effect (compare lanes

3 and 4). PI 3-kinase activation was also
significantly enhanced in synaptosomes
prepared from tetanized dentate gyrus
obtained from saline-treated rats [P �
0.05; ANOVA; n � 6; compare lane 2

(tetanized) with lane 1 (untetanized) on
the sample immunoblot]. Treatment with
wortmannin (F) inhibited this effect
(compare lanes 3 and 4 on the sample
immunoblot). EPSP, excitatory postsyn-
aptic potential.
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stimulated release of glutamate in dentate gyrus is inhib-
ited by PD98059 (198, 199) and, in the context of LTP, it is
interesting to note that intracerebroventricular injection
of PD98059 resulted in inhibition of LTP in perforant path
granule cell synapses and inhibition of the associated
enhancement of glutamate release (397). A further inter-
esting parallel is that in aged rats, which exhibit an im-
pairment in LTP, ERK activation is attenuated and gluta-
mate release is markedly decreased (397).

In addition to its role in hippocampal LTP, activation
of the ERK/MAPK cascade is also required for expression
of LTP at the amygdalar inputs into the insular cortex
(266), and like CaMKII, activation of ERK has been shown
to be increased after contextual fear conditioning (14, 28).
With the use of conditioned taste aversion as a model for
gustatory memory, it was established that increased ERK
activation in the insular cortex was a component part of
the molecular changes that underpinned taste aversion
(56). In a striking parallel between memory and LTP, it
was found that inhibition of ERK blocked both gustatory
memory and LTP in insular cortex (266, 529). Like LTP in
the insular cortex, LTP in visual cortex has been shown to
be dependent on activation of ERK (139).

There is a great deal of evidence indicating that ERK
activation plays a role in long-term memory and therefore
predictably ERK inhibition profoundly affects memory.
Thus it has been demonstrated that ERK inhibitors inhibit
long-term, rather than short-term, memory (636), and this
is consistent with the finding that ERK activation modu-
lates gene expression and consequently stimulates pro-
tein synthesis. ERK inhibition has not been shown to
impair acquisition, but it blocks the formation of long-
term spatial memory (66). This was later confirmed using
another ERK inhibitor, SL327, which attenuated both cue
learning and water maze learning in mice (558). Consis-
tent with a role for activation of ERK in the entorhinal
cortex in spatial learning is the finding that infusion of
PD98059 into the entorhinal cortex immediately after
training resulted in a deficit in retention test 48 h later;
interestingly, this deficit was prevented by pretraining
(222). ERK activation has also been implicated in condi-
tional taste aversion where infusion of PD98059 attenu-
ated the response (56). Thus, although there is general
agreement that long-term memory requires ERK activa-
tion, it is not yet clear which cells exhibit an increase in
ERK activation after training. One group reported that
ERK activation was enhanced in the pyramidal neurons of
the CA1/CA2 in dorsal hippocampus of rats after training
in a spatial learning task, but no significant increase was
detected in CA3 or dentate gyrus (66). Our recent data
indicated that ERK activation was increased in prepara-
tions of whole hippocampus obtained from rats that un-
derwent training in the Morris water maze (199).

The argument for a role for ERK activation in learn-
ing/memory is consolidated by the fact that its involve-

ment has been shown in forms of learning other than
spatial learning. For instance, phosphorylation of ERK in
hippocampus was increased in an NMDA receptor-depen-
dent fashion, 1 h after contextual fear conditioning (28);
this was coupled with the predicted observation that ERK
inhibition blocked fear conditioning (28, 558). It was
shown that while treatment with PD98059 or anisomycin
impaired long-term memory, short-term memory re-
mained intact (548). Similarly, gustatory memory is asso-
ciated with activation of ERK (56). These observations
illustrate a role for ERK activation in a variety of models
of memory, and this recurrent theme has recently been
extended to inhibitory avoidance learning (635, 636). The
theme also extends across species, since ERK activation
is essential for learned responses in Aplysia. Thus pre-
sentation of a single brief noxious stimulus to Aplysia

results in enhancement of the defensive withdrawal reflex
lasting several minutes. This behavioral plasticity involves
presynaptic facilitation of synaptic transmission and is
due to cAMP-dependent protein phosphorylation, trig-
gered by 5-hydroxytryptamine (5-HT) release. Consis-
tently, application of 5-HT can lead to short- or long-term
retention of a learned defensive response; long-term
changes are dependent on protein synthesis and involve
structural changes at the synapses between the sensory
neurons and motoneurons. Recent evidence has sug-
gested that ERK activation is a key player in transduction
of signals to gene transcription (298), and it has been
shown that inhibition of ERK prevents long-term facilita-
tion of sensory neurons to motoneuron synaptic signals
(381) and consistently, inhibition by either anti-ERK anti-
bodies or PD98059 blocked long-term facilitation (416).
Translocation of ERK to the nucleus has been identified
as one step in transduction of the signal; interestingly,
long-term facilitation in Aplysia is associated with trans-
location of an ERK homolog to the nucleus of presynaptic
sensory neurons in a 5-HT-driven and cAMP-dependent
manner (381). Consistent with a specific role for ERK
activation in long-term but not short-term memory is the
finding that translocation does not occur when transient
facilitation is induced in Aplysia (381).

The downstream consequences of ERK activation are
wide ranging; ERK substrates include the cytoskeletal
proteins MAP-2 and Tau; the nuclear proteins c-Myc, c-
fos, and c-jun; Elk-1; CREB; C/EBP� (CREB/Elk binding
protein); and ATF-2 and the signaling proteins phospho-
lipase A2 and RSK (ribosomal S6 kinase). Other substrate
proteins are the potassium channel Kv4.2 and synapsin I
as described above.

The long-term effects of ERK activation involve
translation and transcription (170, 612), which requires
ERK translocation to the nucleus (68). The LTP-associ-
ated parallel increases in activation of ERK, CREB, and
Elk-1 have been shown to be accompanied by upregula-
tion of the immediate early gene zif268; this was blocked
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by the MEK inhibitor SL327, indicating a critical role for
ERK in gene activation (123). Consistently, a rapid and
reproducible upregulation of zif268 mRNA has been re-
ported in granule cells of the dentate gyrus (108, 647), and
this was attenuated when LTP was inhibited by PD98059
(which inhibited LTP); the changes in Homer closely par-
alleled those in zif268 (123, 530). These changes probably
preface the increase in protein synthesis, which has been
clearly linked with ERK and CREB activation, for exam-
ple, after LTP in dentate gyrus (198).

Of the several downstream effectors of ERK, CREB
in particular has received a great deal of attention, prob-
ably since it has been shown to be also activated by other
upstream activators (see below). ERK activation leads to
activation of CREB indirectly by coupling to RSK2, since
phosphorylation of CREB at Ser-133 cannot be achieved
by ERK. RSK2 and other kinases recruit the CREB binding
protein (CBP), which is the first step in gene transcrip-
tion. Since the early reports (451, 454), it has been shown
many times that CREB activation is a consequence of
ERK activation. In the context of LTP, initial studies
showed that mutant mice lacking CREB isoforms � and �
exhibit attenuated LTP (74). It was subsequently reported
that CRE-mediated transcription was increased in re-
sponse to LTP induction in area CA1 (247), while in-
creased CREB phosphorylation accompanied tetanus-in-
duced LTP and BDNF-induced potentiation in dentate
gyrus (198, 347, 387, 554, 657). Inhibitors of ERK, which
blocked LTP, also blocked CREB activation (123, 198,
248, 554). Consistently, in CRE-LacZ transgenic mice, LTP
in CA1 was coupled with upregulation of LacZ expression
(247), while LTP is associated with an increase in CREB-
driven gene expression. It is significant that LTP-induced
increases in CREB phosphorylation were observed both
presynaptically and postsynaptically. Thus when LTP was
induced in perforant path-granule cell synapses, CREB
activation in the dentate gyrus was observed 24 h later
while it was observed less than 2 h later in entorhinal
cortex (199). Interestingly, BDNF-induced LTP was asso-
ciated with enhanced CREB activation in hippocampus
after 15 min, but this change in CREB was not observed at
3 h, suggesting that, at least in this case, there is biphasic
activation of CREB (656); this early change in CREB
activation was also observed in dentate gyrus after teta-
nus-induced LTP (123).

ERK may be a point of convergence of signals from
several kinases activated as a consequence of LTP induc-
tion (248, 519). CREB activation may also represent a
point of convergence since it, like ERK, has been shown
to be activated downstream of PKA, PKC, and CaMKII; it
has yet to be established whether ERK acts as a mediator
in all cases. In contrast to ERK, which utilizes RSK2 to
activate CREB, phosphorylation on Ser-133 by PKA can
occur directly. However, U0126 has been shown to block
CREB phosphorylation in response to forskolin applica-

tion (347, 519), indicating a mediating role for ERK at
least in some cases. Recent evidence has revealed that
PKC also converges on CREB and that CREB activation
by PKC is mediated by ERK (519).

C. Phosphatidyinositol 3-Kinase

It has become clear in recent years that ERK activa-
tion can also be affected by phosphatidylinositol 3-kinase
(PI 3-kinase), which was identified several years ago as a
substrate for tyrosine kinase (see Ref. 172). The idea that
activation of tyrosine kinases was important for expres-
sion of LTP was suggested by the finding that kinase
inhibitors prevented expression of LTP in CA1 and den-
tate gyrus (436, 465) and that mice, in which the nonre-
ceptor tyrosine kinase fyn was knocked out, were unable
to sustain LTP (205). These data were consolidated by the
findings that tyrosine phosphorylation of several sub-
strates was increased after induction of LTP; these in-
cluded phospholipase C (PLC)-� (396), synaptophysin
(436), the �-subunit of voltage-activated calcium channels
(90), TrkA (366), TrkB (198), and the 2B subunit of the
NMDA receptor (528, 531). ERK is also a substrate for
tyrosine kinase, but its activation requires dual phosphor-
ylation on tyrosine and threonine residues. A series of
phosphorylation steps leads to activation of MEK, which
dually phosphorylates, and thereby fully activates, ERK.
Activation of MEK can be achieved by a number of up-
stream signaling events. For example, activation of
metabotropic glutamate receptors leads to activation of
the ras/MEK/ERK cascade (161, 301), and similarly, cer-
tain isoforms of PKC (203) and the ��-subunit of hetero-
trimeric G proteins (625) can also contribute to its acti-
vation. At least two tyrosine kinase substrates, raf (379)
and PI 3-kinase (140), can also lead to phosphorylation of
MEK.

It is interesting, therefore, that LTP in dentate gyrus
(282) and CA1 (541) were both inhibited by PI 3-kinase
inhibitors, while induction of LTP was associated with
kinase activation (Fig. 3). In the case of the dentate gyrus,
wortmannin inhibited the LTP-associated increase in glu-
tamate release, and it also inhibited depolarization-in-
duced glutamate release in vitro (282). Sanna et al. (541)
concluded on the basis of recovery of LTP after washout
of the inhibitor, that PI 3-kinase activity was required for
early expression of LTP rather than for its longer term
maintenance. This is not the conclusion drawn from ex-
periments that were conducted in the amygdala. In this
case, activation of PI 3-kinase was shown to be increased
in amygdala of rats that underwent fear conditioning, and
this was paralleled by a similar increase in kinase activa-
tion after induction of LTP (329). However, these authors
also reported that PI 3-kinase inhibitors blocked tetanus-
induced LTP and interfered with long-term fear memory,
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but left short-term memory intact. In contrast, both short-
term and long-term memory were shown to be affected by
PI 3-kinase inhibition when assessed in a step-down in-
hibitory avoidance training paradigm, and it was con-
cluded that activation of PI 3-kinase in hippocampus was
necessary for memory acquisition, consolidation, and re-
trieval of step-down inhibitory avoidance in rats (45).
Despite the fact that these studies have identified a role
for PI 3-kinase in a few forms of synaptic plasticity,
details of the events leading to its activation and the
changes which occur downstream of its activation remain
to be systematically elucidated. One group has initiated a
study of the consequences of PI 3-kinase activation in
synaptic plasticity in amygdala and has reported that
inhibition of PI 3-kinase blocked LTP-associated activa-
tion of ERK and CREB, suggesting that PI 3-kinase mod-
ulates synaptic plasticity by an action upstream of ERK
activation (329). Meanwhile, there has also been some
progress in assessing changes linked with PI 3-kinase
activation in vitro. Significantly AMPA- and NMDA-depen-
dent activation of ERK is PI 3-kinase dependent, and
glutamate-induced activation of striatal neurons has been
shown to induce PI 3-kinase-dependent phosphorylation
of Akt and CREB (492).

D. The Consequences of CREB Activation

Activation of CREB has been identified as a critically
important transcription factor in memory formation. Like
ERK activation, its role has been described in several
forms of learning and memory and in a number of species.
For instance, CREB-dependent transcription has been as-
sociated with long-term memory in Drosophila and Aply-

sia as well as in mice and rats (89, 569). Indeed, among
the earliest studies were the reports that CREB activation
was essential for long-term facilitation in Aplysia and for
long-term memory in Drosophilia (74, 381). At about this
time it was also shown that mice with a hypomorphic
CREB allele, generated by homologous recombination,
displayed deficits in water maze learning and fear condi-
tioning, indicating similar responses in mammals (242).
Since then a few studies have confirmed this observation.
Thus CREB phosphorylation was shown to be increased
in hippocampus and entorhinal cortex of rats that were
trained in a Morris water maze (199), while contextual
fear learning has also been shown to stimulate the phos-
phorylation of CREB in the hippocampus of mice (248).
Local microinjection of phosphorothioate-modified oli-
godeoxynucleotides antisense to CREB into the rat amyg-
dala impaired conditioned taste aversion memory when
tested 3–5 days later (303), and similarly intrahippocam-
pal injections resulted in impairment in long-term spatial
memory (210). In contrast, environmental enrichment,
which resulted in improved performance in the Morris

water maze, was paralleled by increased CREB immuno-
reactivity in the hippocampus (642).

Induction of LTP has been associated with rapid and
transient activation of several immediate early genes
(IEGs), which parallels increases in protein synthesis and
CREB phosphorylation; consistently, agents that inhibit
LTP and CREB activation also inhibit protein synthesis
(198, 366) as well as transcription of certain IEGs (656).
The close coupling between CREB phosphorylation and
protein synthesis was also identified by the finding that
CREB activation is an essential step in the cascade lead-
ing to the generation of new dendritic spines, the primary
targets of excitatory synaptic inputs associated with long-
term morphological modifications seen during LTP (440).
CREB activation has also been shown to be essential for
BDNF-induced transcription (160) and plays a key role in
BDNF-induced potentiation (see below).

E. Activation of IEGs and Late-Response

Genes in LTP

The first evidence of activation of IEGs in LTP was
reported in the early 1990s. In these studies it was shown
that induction of LTP in dentate gyrus in anesthetized rats
was associated with a consistent increase in expression of
zif268 but not in c-fos (516, 647), although increases in
c-fos-related genes, c-jun, junB, and junD were also de-
scribed (6). In the awake rat, it was established that rapid,
transient increases in c-jun and jun-B mRNA and protein
and in Fos-related protein were associated with LTP in
the dentate gyrus and that these changes were NMDA
receptor dependent. A more delayed and persistent in-
crease in jun-D mRNA and protein was observed (124).
Although several changes in IEGs have been described,
perhaps the most consistent LTP-associated changes have
been shown to occur in zif268 (see below).

Recent attention has focused on analysis of changes
in activity-regulated cytoskeleton-associated protein
(Arc) in LTP. Arc is upregulated at the mRNA and protein
levels by synaptic activity, and while this is known to be
NMDA receptor dependent, the details of the signaling
events leading to its induction remain unclear (332, 352,
591). Arc mRNA is delivered to dendrites and translated
within minutes after tetanic stimulation, and Arc protein
is locally translated. Because Arc protein binds to actin, it
has been proposed that it participates in cytoskeletal
restructuring after synaptic activation, and therefore, one
challenge is to assess whether restructuring actually de-
pends on upregulation of Arc.

Consistent with the observed LTP-associated change
in Arc, disruption of Arc by antisense oligonucleotides
inhibits LTP and also long-term spatial memory (211).
Interestingly, only long-term changes were affected, so
induction of LTP and short-term memory were intact.
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Recent data have revealed that BDNF-induced potentia-
tion is coupled with Arc activation and that this is medi-
ated by phosphorylation of ERK (656). It has been shown
in an in vitro study that BDNF upregulates Arc synthesis
and activates CaMKII in synaptoneurosomes in an NMDA-
dependent manner (657). Interestingly, although this
preparation contains both presynaptic and postsynaptic
elements, mRNA for both Arc and CaMKII were found in
purified synaptosomes, suggesting that, in addition to its
effects in the postsynaptic neuron, Arc may contribute to
morphological changes that have been observed in the
presynaptic terminal after induction of LTP. Although Arc
expression and CaMKII activity are stimulated by similar
events and although Arc activation modulates CaMKII
(211), the specific importance of these observations in the
context of LTP or memory remains unclear.

IEGs are also described as early-response genes, and
they act as transcription factors to induce late-response
genes. After translation in the cytoplasm, early-response
gene products bind to regulatory sites on DNA in the
nucleus, stimulating transcription of late-response genes.
Protein products of late-response genes may be structural
proteins, enzymes, ion channels, or neurotransmitters,
which are involved in neuronal growth and neuronal plas-
ticity. Receptors are another likely protein product, and
there is specific evidence that L-LTP is associated with
synthesis of AMPA receptors (450).

E-LTP has a decay time constant of �2 h, whereas
L-LTP can be divided into that which is protein synthesis
dependent, with a decay time constant of �4 days (LTP2),
and the component which is dependent on new transcrip-
tion and translation, with a decay time constant of �23
days (LTP3; Ref. 7). The latter is associated with in-
creased levels of certain transcription factors like zif268
(also called Egr1), Egr2, and Egr3 (516, 645, 654) and
AP-1, c-jun, and jun-B (108). In the case of zif268, which
is perhaps the most studied IEG in relation to LTP, one
gene product was identified as a nerve growth factor
response gene product in PC12 cells (417), which has
been shown to stimulate cell growth and differentiation
(185).

Induction of LTP in dentate gyrus leads to a rapid and
robust NMDA-dependent transcription of zif268 (108,
647), and although the change occurs almost immediately,
expression of zif268 mRNA has been identified as a criti-
cal element in stimulating protein synthesis on which
consolidation of LTP depends (6). Once stimulated, zif268
protein binds to its response element, and this binding has
been detected after induction of LTP (644). Interestingly,
it has become clear that LTP, induced in adult visual
cortex by stimulation of the lateral geniculate nucleus
(229) and in insular cortex by stimulation of the basolat-
eral amygdala (266), is associated with an increase in
zif268 immunoreactivity, although there is no evidence of

a similar response in CA1 after stimulation of Schaffer
collaterals (166).

Results from a recent study using zif268 knockout
mice demonstrated that this gene is required for both late
LTP as measured 2 and 3 days after high-frequency stim-
ulation (HFS) and hippocampal-dependent long-term
memory (75, 267). While LTP in wild-type and mutant
mice was similar in the first hour after tetanic stimulation
in anesthetized and freely moving animals, subsequent
analysis, after 24 and 48 h, in the freely moving animals
revealed an absence of LTP in mutant mice; whereas
induction of zif268 was observed in wild-type mice, it was
absent in mutant mice. These findings were closely par-
alleled by data obtained from analysis of spatial memory;
thus short-term memory was intact in mutant mice but
long-term memory was severely impaired. Interestingly,
behavioral impairments extended beyond changes in spa-
tial memory, since both object recognition and condi-
tioned taste aversion were similarly affected (75, 267).

Like zif268, induction of Arc (see above) and junD
have been associated with L-LTP (241). Indeed, this group
has systematically assessed the sequential changes in in-
ducible transcription factors after paradigms that induce
LTP1, LTP2, and LTP3 and have concluded that expres-
sion of these factors does not correlate well with the
extent of change in early LTP but rather with consolida-
tion and longevity of LTP. Specifically it was shown that
robust expression of zif268 and Egr2 was observed with
paradigms that resulted in LTP3, whereas less robust
expression was observed with paradigms that resulted in
LTP2 (241); this is consistent with the findings of the
Laroche group (see above).

F. Protein Synthesis and LTP

Evidence suggests that the switch from early- to late-
phase LTP requires gene expression and protein synthe-
sis, with studies from several laboratories demonstrating
that tetanus-induced potentiation of the synaptic re-
sponse in CA1 and dentate gyrus was relatively short-lived
in animals that were injected with protein synthesis in-
hibitors (300, 435, 474, 475, 587). However, actinomycin
D, an inhibitor of mRNA synthesis, exerted no significant
effect during the first 3 h after tetanus (168, 474), although
an inhibitory effect was observed after �5 h (168), sug-
gesting a dependence on transcription and translation at
this time. Interestingly, there was evidence of newly syn-
thesized proteins in the extracellular medium 3 h after
induction of LTP (155), while increased synthesis of pre-
synaptically located proteins was also reported within
this time frame (359). Similar temporally distinct phases
were distinguished with respect to learning in 1980 when
it was reported that intrahippocampal injection of the
protein synthesis inhibitor anisomycin inhibited retention
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in a brightness discrimination task but that the inhibition
only occurred if the drug was administered before train-
ing or several hours after training; injection of anisomycin
shortly after training failed to affect retention (206).
These data indicate that activation of the cellular machin-
ery that leads to protein synthesis and hence to the reten-
tion of the task occurs in the minutes immediately after
training and that a further “wave” of cell activity occurs
later.

It is likely that the increase in protein synthesis that
accompanies LTP contributes to the establishment of the
morphological changes that have been reported, for ex-
ample, the increases in postsynaptic surface area (126),
spine number (e.g., Refs. 95, 317), and spine area (157).
LTP has also been shown to increase the number of large
spines (126) and axospinous perforated synapses (188,
190, 555) and perforated synaptic densities with larger
apposition zones between pre- and postsynaptic struc-
tures (79). Changes in distribution (25) and numbers (413)
of synaptic vesicles and changes in synaptic curvature
(127) have also been reported. These observations sup-
port the view that morphological changes occur on both
sides of the synapse (149, 334), and this idea is consoli-
dated by data from biochemical analysis. For example,
Nayak et al. (449) observed that late-phase LTP can be
supported in CA1 minislices in which the cell bodies of
presynaptic Schaffer collaterals are removed and that this
was accompanied by an increase in synthesis of AMPA
receptor subunits; thus protein synthesis occurred in the
postsynaptic cell, and LTP was sustained in the absence
of protein synthesis in the presynaptic cell. Further evi-
dence that protein synthesis occurred in the postsynaptic
neurons after LTP in Schaffer collateral-CA1 synapses
was provided by the observation that potentiation of the
synaptic response was accompanied by an early increase
in the concentration of the �-subunit of CaMKII in den-
drites and that this increase was blocked by anisomycin
(480). Similarly, neurotrophin-induced synaptic potentia-
tion has been coupled with increased protein synthesis
(273), and it was suggested that, in these two cases,
synthesis occurred in dendritic spines in which polyribo-
somes have been located (616). On the other hand, LTP in
perforant path-granule cell synapses has been shown to
be accompanied by increased protein synthesis in both
granule cells (M. Casey and M. A. Lynch, unpublished
data) and entorhinal cortex (285, 435) and that among the
proteins synthesized after tetanic stimulation were pre-
synaptic proteins, synapsin, synaptophysin, and synapto-
tagmin (359). Further evidence of increased protein syn-
thesis in presynaptic cells was described in cultured CA1
and CA3; here an increase in the number of active pre-
synaptic terminals (assessed using the fluorescent dye FM
1–43) accompanied a form of synaptic plasticity induced
by a membrane-permeable analog of cAMP (Sp-cAMPS;
Ref. 362). Significantly this effect was blocked by aniso-

mycin, indicating that the change was dependent on pro-
tein synthesis. The authors speculated that these obser-
vations were consistent with recruitment of previously
silent synapses. Further indirect evidence suggesting that
protein turnover is increased presynaptically includes the
observation that there is enhanced vesicular recycling
after potentiation of hippocampal synaptic responses in
models that resembled LTP by two independent groups
(371, 534). It might be speculated that changes of this
nature are necessary to support the persistent increase in
glutamate release that has been consistently shown to
accompany LTP, at least in perforant path-granule cell
synapses (62, 85, 392, 397–400).

One question that remains to be addressed is how
does synaptic activity leading to LTP trigger translation in
neurons? One possibility is that it triggers local dendritic
protein synthesis, which is required for maintenance of
BDNF-induced potentiation (590, 603; see below). One
protein that plays a role in initiation of translation is
mammalian target of rapamycin (mTOR), a serine/threo-
nine protein kinase that regulates the activity of proteins
that bind to eukaryotic initiation factor-4E (4E-BPs).
Phosphorylation of 4E-BPs by mTOR allows these pro-
teins to dissociate from initiation factor-4E (eIF-4E),
thereby initiating translation. mTOR, eIF-4E, and two dis-
tinct 4E-BPs have been located at dendrites and cell bod-
ies of hippocampal neurons, but they have also been
shown to colocalize with synapsin I, indicating their pres-
ence presynaptically as well as postsynaptically. Of sig-
nificant interest is the finding that rapamycin, which in-
hibits mTOR, blocked the expression of late-phase LTP
(602a).

VI. NEUROTROPHINS, LONG-TERM

POTENTIATION, AND MEMORY

The first reports indicating that neurotrophins mod-
ulated LTP appeared more than a decade ago when the
work of two groups demonstrated that epidermal growth
factor and fibroblast growth factor enhanced LTP in CA1
(2, 608, 609). More recently, the focus of attention has
been on nerve growth factor (NGF), BDNF, and neuro-
trophin-3 (NT-3), which bind preferentially to TrkA, TrkB,
and TrkC (113, 250, 294). The first series of experiments
showed that acute application of exogenous BDNF en-
hances synaptic transmission and induces a form of po-
tentiation that resembles LTP in CA1 cultures (272, 563)
and CA1 slices (158, 299). NT-3 was also shown to induce
a similar potentiation in hippocampus (272), a finding
which was replicated in isolated spinal cord (26). How-
ever, a more recent assessment of LTP in CA1 prepared
from mice in which NT-3 was knocked out later in devel-
opment (to avoid the lethality associated with homozy-
gous knockouts) indicated that NT-3 was not necessary
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for induction of LTP (361). NGF did not induce LTP in
CA1 (272, 601), possibly because of the low TrkA density
in this area, but indirect evidence suggests that NGF may
play a role in expression of LTP in perforant path granule
cell synapses where expression of the neurotrophin and
its receptor are relatively high (182, 431). LTP was found
to be impaired in dentate gyrus of genetically hyperten-
sive (GH) rats, in which NGF concentration and Trk were
decreased, while intraventricular injection of NGF re-
versed this deficit in LTP (281). In addition, induction of
LTP in this area increased NGF mRNA expression (76,
93). While neither NGF nor NT-3 induced persistent po-
tentiation in the visual cortex, application of BDNF en-
hanced the synaptic response in a dose-dependent man-
ner (12).

The focus of attention on BDNF-induced potentiation
has intensified with the finding that, in addition to its
stimulatory effect in vitro, intrahippocampal infusion of
BDNF into anesthetized rats leads to potentiation of the
synaptic response in dentate gyrus (414). Like LTP in-
duced by tetanic stimulation, BDNF-induced potentiation
was shown to rely on NMDA receptor activation and to be
ERK and CREB dependent; thus, while potentiation was
associated with enhanced phosphorylation of ERK and
CREB, it was inhibited by local infusion of MEK inhibitors
PD98059 and U0126, and in these experiments, evidence
of activation of ERK and CREB was predictably absent
(415). Similarly, BDNF-induced potentiation is associated
with upregulation of Arc, while both BDNF-induced po-
tentiation and the associated increase in Arc expression
were blocked by actinomycin D (415). A role for BDNF in
expression of LTP has therefore been bolstered by these
findings and by a great deal of indirect evidence. For
example, inhibition of tyrosine kinases such as TrkB us-
ing K252a or tyrphostin AG879 blocks LTP (198, 366, 424),
transgenic mice with a targeted deletion of the BDNF
(299, 485) or TrkB (419) gene exhibit impaired LTP and
exposure of slices to TrkB-IgG, a BDNF scavenging pro-
tein or a specific BDNF monoclonal antibody reduced
LTP (99, 158). Interestingly, in BDNF knockout mice,
reexpression of the BDNF gene through transfection or
treatment with recombinant BDNF results in restoration
of LTP (485). It has also been demonstrated that BDNF
mRNA expression is increased after the induction of LTP
in the CA1 region of the hippocampal slice (485) and in
the granule cells of the dentate gyrus (76, 93, 142, 424). An
early increase in BDNF protein (198) has been coupled
with the early (30 min posttetanus) increase in mRNA in
perforant path granule cell synapses (424), suggesting
that BDNF protein is quickly translated and upregulated
after the induction of LTP in vivo.

BDNF has been shown to act presynaptically and
postsynaptically; for example, BDNF increases the fre-
quency of miniature EPSCs and enhances paired-pulse

facilitation (201), and it increases synaptic transmission
in Xenopus nerve-muscle preparations (339, 594) and in
cultured hippocampal neurons (319). Furthermore, pre-
synaptic, but not postsynaptic, expression of TrkB.T1, a
COOH-terminal truncated dominant negative TrkB recep-
tor, inhibited BDNF enhancement of synaptic transmis-
sion (322), while activation of TrkB-associated signaling
enhanced neurotransmitter release from presynaptic ter-
minals (315, 322). Consistently, we have found that incu-
bation of synaptosomes in the presence of BDNF, which
enhances phosphorylation of TrkB, also enhances gluta-
mate release, and this is inhibited by K252a, suggesting
that the effect is dependent on Trk activation (198, 199).
However, BDNF increased amplitude of miniature EPSPs
(319) while intracellular application of K252a blocked the
BDNF-induced synaptic enhancement in cortical cultures
(319). Similarly, BDNF-induced potentiation in dentate
gyrus was shown to be coupled with increased activation
of ERK and CREB, and these effects were considered to
reflect a postsynaptic action of BDNF (415), although
similar effects occur presynaptically (198).

Among the substrates that are activated following
BDNF stimulation of TrkB is ERK (228, 378, 390), and
BDNF-induced ERK activation has been shown to occur
in dentate gyrus in vitro (198, 199) and after intrahip-
pocampal injection of BDNF (657). In vitro experiments
identified the importance of receptor activation in down-
stream signaling, since BDNF-induced increases in phos-
phorylation of both TrkB and ERK were blocked by the
Trk inhibitor tyrphostin AG879 (199; Fig. 3). The impor-
tant role of this kinase in expression of tetanus-induced
LTP was underscored by the finding that its inhibition
resulted in suppression of LTP (see above); in parallel,
while intrahippocampal infusion of BDNF leads to rapid
phosphorylation of ERK, infusion of ERK inhibitors
blocked potentiation (657).

Increases in BDNF mRNA and protein have been
recorded in hippocampus after training in a spatial learn-
ing task (199, 421) and in dentate gyrus after training in a
passive avoidance test (363), paralleling the changes ob-
served after induction of LTP. Consistently, a rapid and
selective induction of BDNF expression has been re-
ported in amygdala during hippocampus-dependent con-
textual learning (212). It has been shown that behavior in
the water maze test is impaired in mutant mice carrying a
deletion of one copy of the BDNF gene (333) or in rats
that had received an intracerebroventricular infusion of
anti-BDNF antibody (432). Moreover, injection of BDNF
antisense oligonucleotides into the dentate gyrus im-
paired retention in a passive avoidance paradigm (363).
Interestingly, spatial memory impairment has been linked
with the decrease in BDNF concentration, which is a
feature of hypoxic-ischemic insult (19, 292), while it was
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also reported that aged rats, which were shown to have
decreased BDNF mRNA, exhibited memory deficits (116).

Minichiello et al. (419) generated conditionally gene
targeted mice, known as TrkB-CRE mutant mice, in which
the knockout of the TrkB gene postsynaptically led to
elimination of TrkB protein in the forebrain; these ani-
mals exhibited impairments in spatial learning and also
LTP. Regression analysis revealed that an age-related de-
crease in TrkB mRNA in the pons predicted impaired
memory performance of rats in the Morris water maze
(116).

Consistent with a role for BDNF-induced ERK acti-
vation in learning/memory are the findings of several
groups which indicate that certain forms of learning are
associated with ERK activation (see above). Interestingly,
it has been shown that training animals in the Morris
water maze increased BDNF concentration in hippocam-
pus, and this was coupled with increased BDNF release
and increased ERK activation; these changes were strik-
ingly similar to those observed after induction of LTP in
dentate gyrus (199). Environmental enrichment, which
increases BDNF concentration in hippocampus (243), re-
sulted in improved performance in the Morris water maze,
and this was paralleled by increased CREB immunoreac-
tivity in the hippocampus (642). Similarly, environmental
enrichment enhanced memory for contextual fear condi-
tioning, but not cued fear conditioning, and interestingly,
hippocampal slices prepared from these mice exhibited
enhanced LTP in CA1 (144).

An age-related decrease in BDNF mRNA has been
described (116), but other studies reported no significant
difference between the expression of BDNF in the hip-
pocampi of old and young rats (116, 309, 405), despite the
fact that BDNF mRNA and protein were both decreased in
other brain areas like the pons (116). An age-related in-
crease in BDNF was reported by Katoh-Semba et al. (278),
and recent experiments in this laboratory have confirmed
this observation; our findings revealed that while BDNF
concentration in hippocampus (M. Gooney, E. Messaondi,
F. O. Maher, C. R. Bromham, and M. A. Lynch, unpub-
lished data) and cortex (367) were increased, ERK acti-
vation was decreased. The evidence which indicated that
TrkB activation was downregulated with age suggested
that the primary deficit is associated with alterations in
receptor function. In a recent report, it was shown that
BDNF mRNA expression in the CA1 of aged rats that
performed well in a spatial learning task was enhanced
after training, but this increase was not observed in rats
which exhibited an impairment in spatial learning and, in
addition, basal expression of BDNF mRNA was lower in
this group (546). Interestingly, age-related decreases in
TrkB expression (116, 544), TrkB phosphorylation (Gooney
et al., unpublished data), and ERK activation (235, 397,
660) have been reported, whereas ERK phosphorylation

was decreased in dentate gyrus of aged rats that did not
sustain LTP (397).

Hippocampal NGF concentration has also been re-
ported to decrease with age (310), and Henrikkson et al.
(225) have reported that good performance in a spatial
learning task correlated with higher levels of NGF in the
hippocampus of aged rats. However, this age-related de-
crease in NGF was not confirmed (117), and recent stud-
ies from this laboratory have indicated that although NGF
concentration was decreased in hippocampus of aged rats
(284), it was increased in cortex (367).

VII. SYNAPTIC PLASTICITY AND

THE STRESSED BRAIN

A. Behavioral Stress

The influence of hormones on hippocampal function,
particularly those secreted as a consequence of activation
of the hypothalamo-pituitary-adrenal axis (HPA) mainly
as a response to stress, has been acknowledged for sev-
eral decades. Stress is best described as a disturbance of
physiological and psychological homeostasis ultimately
controlled by activity of the HPA and resulting in secre-
tion of corticosteroids from the adrenal cortex. The hip-
pocampus has the highest concentration of corticoste-
rone receptors in the brain (see Ref. 391), and the pro-
found effects of stress on hippocampal function, and in
particular on learning and memory processes, have been
attributed to this (for example, see Ref. 526).

Identification of the mechanisms by which stress
leads to modulation of hippocampal function has been the
subject of intense interest and has been regarded as an
opportunity to dissect the cellular changes that accom-
pany neuronal plasticity. An interesting, and perhaps pre-
dictable, finding is that stress levels of glucocorticoids
have a profound inhibitory effect on hippocampal cell
activity (598), while low levels of glucocorticoids enhance
activity (264), and this pattern is repeated with respect to
glucocorticoid levels and LTP. Therefore, high concentra-
tions of circulating glucocorticoids, consistent with
marked stress, inhibited LTP while low concentrations of
glucocortocoids enhanced LTP (134, 133, 288, 488). Con-
sistent with these concentration-dependent changes is the
finding that spatial learning, as analyzed in an eight-arm
radial maze, was attenuated after administration of high
doses of corticosterone (350); similarly, placing rats into
a profoundly fear-provoking environment (that also leads
to high circulating concentrations of corticosteroids) im-
pairs memory (135) and also LTP induced by primed-burst
potentiation (412). Analysis of receptor activity has clar-
ified the mechanism underlying the dose-dependent ef-
fects of glucocorticoids; thus it has been revealed that
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type I receptor activation restored performance in a spa-
tial learning task after adrenalectomy, whereas type I and
type II activation, in combination, impaired performance
(623).

The effect of stress on LTP has been studied by a
number of groups, and most data point to an inhibitory
effect of stress. For example, slices prepared from rats
that were subjected to stress exhibited impaired LTP in
area CA1 of the hippocampus in vitro (163, 566, 567).
Similarly, it was shown that stress inhibited LTP in CA1 in
the awake rat (132, 134, 652) and in dentate gyrus in the
urethane-anesthetized rat (442, 629). Several groups have
shown impairment in neuronal function in animals that
were exposed to psychological stress. The study by Gar-
cia et al. (184) described impairment in LTP in the CA1
region of mouse hippocampal slices after exposure to
acute stress. This impairment was evident 24 h after the
stress induced by restraint and tail shock, but LTP was
restored 48 h later; therefore, this impairment in neuronal
function was reversible and temporary. Another study
noted that LTP was impaired in the dentate gyrus of
hippocampal slices from rats that were restrained and
exposed to tail shock every minute for 30 min; indeed,
additional exposure to tail shock markedly accentuated
the effect compared with animals that were just re-
strained (163).

Rather than exposing animals to paradigms such as
psychological stress, which can be difficult to replicate
and may be associated with unidentifiable variables, stud-
ies have simulated the effects of stress by treating animals
with corticosterone. In one such study, the effect of a
single high dose of corticosterone was shown to inhibit
LTP in the dentate gyrus in the short term, but this effect
was not observed after 48 h (488). To simulate long-term
stress, corticosterone was administered for 21 days, and
the inhibiting effect of this treatment regime persisted for
2 days after cessation of treatment (488). Similarly, in
vitro experiments have revealed that corticosterone re-
duced LTP (17, 515). It seems reasonable to conclude, on
the basis of these and other studies, that the concentra-
tion and persistence of plasma corticosteroids determine
the effects on neuronal tissue, and it is assumed that
stress, by increasing circulating levels of corticosterone,
results in glucocorticoid receptor activation in hippocam-
pus. This view is supported by the finding that adminis-
tration of the glucocorticoid receptor agonist RU28362
prevented an LTP-inducing stimulation paradigm from
inducing LTP; indeed, it resulted in LTD (487). Although
an inverse relationship between circulating corticosteroid
concentration and the ability of rats to sustain LTP seems
to be a consistent finding, a more complex relationship
between potentiation and circulating corticosteroids was
identified when the effect of primed-burst stimulation was

assessed, such that at low concentrations of circulating
corticosteroids a direct relationship with LTP was ob-
served and at high concentrations an inverse relationship
existed (130). This accurately reflects the concentration-
dependent changes in spatial memory. In addition to its
effect on LTP, stress has been shown to enhance LTD in
CA1 in vitro (289) and also in the awake rat (652), and in
the latter case, the effect of stress has been shown to be
dependent on glucocorticoid receptor activation and on
protein synthesis.

The effects of stress are not confined to an increase
in glucocorticoid production, and several neurohormones
and neurotransmitters that are released as a consequence
of stress, for example, opioids, norepinephrine, epineph-
rine, and vasopressin, modulate hippocampal function. In
the past few years it has emerged that the proinflamma-
tory cytokine interleukin-1� (IL-1�) may be a key media-
tor of stress, and evidence suggests that many forms of
behavioral stress (although not predator stress, Ref. 498)
increase brain IL-1� expression (442, 452, 504). IL-1� is
known to stimulate secretion of corticotrophin releasing
factor from the hypothalamus (542), and it has been re-
ported that intrahippocampal administration of IL-1� re-
sulted in activation of the HPA (409), confirming the
observation that the hippocampus can modulate hypo-
thalamo-pituitary function (306). These data present the
possibility that increased IL-1� concentration in hip-
pocampus might contribute to the stress-associated in-
crease in circulating corticosteroids, while it has also
been postulated that IL-1� may trigger some of the stress-
induced changes in monoaminergic function (145). Fur-
ther evidence that lends support to this idea has been
obtained from analysis of changes in the aged animal.
Thus the age-related increase in IL-1� concentration in
hippocampus (441, 442) is correlated with increased
plasma levels of corticosterone (306, 442), with an impair-
ment in LTP (67, 306-308, 442; Fig. 4) and with poor
performance in a variety of hippocampal-dependent
learning tasks (193, 501).

B. Oxidative Stress

A negative effect of reactive oxygen species (ROS) on
synaptic plasticity has been consistently described; for
example, H2O2 is known to inhibit LTP in CA1 in vitro (29,
490) and dentate gyrus in vivo (Fig. 4), where the effect is
associated with increased ROS (283, 355). Indeed, a neg-
ative correlation between ROS concentration in hip-
pocampus and ability of rats to sustain LTP has been
described (355), and therefore, the finding that isolation
stress that was associated with attenuated LTP in dentate
gyrus (442, 629) led to an increase in accumulation of ROS
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in hippocampus was not surprising. The evidence sug-
gested that this was a consequence of increased IL-1�
concentration, which enhanced activation of superoxide
dismutase (SOD), the enzyme which catalyzes the conver-
sion of superoxide to H2O2, without affecting the activi-
ties of catalase or glutathione peroxidase, the enzymes
which catalyze conversion of H2O2 to oxygen and water.
The data indicated that treatment with antioxidant vita-
mins E and C overcame the inhibitory effects of stress on
LTP and, in parallel, prevented the increased ROS accu-
mulation in hippocampus (629). Consistent with these
findings is the observation that LTP in CA1 is impaired in
transgenic mice that overexpress SOD (180, 320, 610). It
was shown in these studies that LTP could be rescued by
treatment with catalase or the antioxidant N-tert-butyl-
phenylnitrone (180), diazepam (320) or by inhibition of

SOD (610). These effects have been variously interpreted
as indicating that the increase in H2O2 accumulation re-
sulting from increased SOD activity diminishes LTP (180)
and conversely that superoxide is necessary for expres-
sion of LTP (610). Predictably, the inhibitory effect of
intracerebroventricular injection of H2O2 on LTP, at a
concentration which increased accumulation of ROS in
hippocampus, was overcome by pretreatment with the
antioxidant phenylarsine oxide (629).

Parallel assessments on LTP and spatial learning
were conducted in some studies. The data obtained from
these experiments indicated that the impairment in LTP
that was observed in transgenic mice that overexpressed
SOD was accompanied by a deficit in spatial learning
supporting the view that similar mechanisms underlie the
expression of LTP and learning (318, 610).

FIG. 4. Brain-derived neurotrophic
factor (BDNF) concentration was signif-
icantly increased in homogenate pre-
pared from dentate gyrus of rats which
underwent training in the Morris water
maze (trained) compared with rats
which served as yoked controls (un-
trained); a parallel increase was ob-
served in homogenate of dentate gyrus
prepared from rats which sustained LTP
in perforant path-granule cell synapses
following tetanic stimulation (tetanized;
tet) compared with untetanized tissue
(untet; P � 0.05 in both cases; ANOVA;
A). KCl-induced BDNF release in slices
prepared from dentate gyrus was signif-
icantly enhanced in tissue prepared from
tetanized, compared with untetanized
tissue and in trained, compared with un-
trained, rats (P � 0.05 in both cases;
ANOVA; B). Phosphorylation of TrkB (C)
and ERK (D) was significantly enhanced
in synaptosomes prepared from dentate
gyrus of rats which underwent training
and those which sustained LTP [P � 0.05
in all cases; ANOVA; compare lane 2 (ex-
perimental) with lane 1 (control) in all
sample immunoblots]. Phosphoinositide
turnover was significantly enhanced in
synaptosomes prepared from dentate gy-
rus of rats which underwent training and
those which sustained LTP (P � 0.05 in
both cases; ANOVA; E). Activity of PKC
was significantly enhanced in synapto-
somes prepared from dentate gyrus of
rats which underwent training and those
which sustained LTP (P � 0.05 in all
cases; ANOVA; F). Glutamate release
was significantly enhanced by incubation
of synaptosomes in KCl (* P � 0.05;
ANOVA), but a further enhancement was
observed in synaptosomes prepared from
dentate gyrus of rats which underwent
training and those which sustained LTP
(** P � 0.01 in both cases; ANOVA; G).
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C. Irradiation Stress

Among the several effects of irradiation is an in-
crease in ROS production (341, 518), and some effects of
exposure of cells to ROS are mimicked by exposure of
cells to ionizing radiation. In the present context, it is
significant that a recent study demonstrated that expo-
sure to whole body irradiation resulted in an increase in
ROS accumulation in hippocampus (341). Assessment of
LTP in these rats revealed a marked attenuation after
irradiation. The first observation of such an effect was
reported by Pellmar and colleagues (489, 491, 614) who
demonstrated that LTP was markedly reduced in slices of
CA1 prepared from guinea pigs that had been exposed to
�-irradiation; the findings from this laboratory indicated
that the inhibitory effect of irradiation extends to LTP in
perforant path-granule cell synapses in vivo (341). While
the effects of irradiation may arise from an accumulation
of ROS, the data have indicated that significant cell death
occurs in hippocampus of irradiated rats; importantly, it
has been shown that the detrimental effects of irradiation
on hippocampal function are abrogated by treatment with
the polyunsaturated fatty acid eicosapentaneoic acid
(341), which has been shown to have anti-inflammatory
properties (30, 219).

In parallel with the effect of irradiation on LTP, a
number of groups have reported that it also negatively
impacts on spatial learning. Deficits in T-maze and water
maze performance were observed several weeks after
X-ray irradiation; these changes were, to some extent at
least, task dependent and dose dependent and were ac-
companied by evidence of necrosis in the fimbria and
degenerative changes in corpus callosum (233). Deficits in
spatial learning are not confined to animals that were
exposed to X-ray, since exposure to iron-56 particle irra-
diation has also been shown to impair performance in a
spatial learning task (568).

D. Age, LTP, Learning, and Memory

Cognitive deficits in aged rats, particularly deficits in
spatial information processing, have been recognized and
reported for many years and by several groups (42, 136–
138, 405, 509). Correlated with deficits in performance in
spatial learning, for example, in the Barnes circular maze,
is a deficit in LTP in CA1; thus animals that were relatively
unimpaired in spatial learning sustained LTP to some
degree, while severely impaired animals did not sustain
LTP (31). Interestingly, treatment with the cAMP phos-
phodiesterase inhibitor rolipram enhanced performance
of aged rats, suggesting that a decrease in cAMP and/or
cAMP-induced signaling contributes to the age-related
change. However, several other changes have been cou-
pled with the age-related decline in spatial memory; for

example, mGluR-induced phosphoinositide turnover was
decreased with age, and that was linked with decreased
PLC-� immunoreactivity (455) whereas the arachidonic
acid-induced increase in phosphoinositide turnover in
dentate gyrus was decreased in aged rats that exhibited
poor spatial learning (358). It was also shown that PKC-�
immunoreactivity in CA1 (but not dentate gyrus) was
correlated positively with spatial memory impairment in
aged rats (109), while a decrease in PKC activity was
shown to accompany the deficit in LTP in aged rats (395).
Mitochondrial decay and DNA and RNA oxidation have
also been reported to increase with age and to correlate
with poor performance in spatial learning (336), and these
findings are consistent with the age-related increase in
ROS accumulation that we have repeatedly observed, and
which is coupled with impaired LTP and with evidence of
inflammation (217, 462). Interestingly, chronic treatment
of aged rats with aspirin, which combats inflammation,
markedly improved performance in a spatial learning task
in the aged rats (574). Consistent with the idea that accu-
mulation of ROS impacts on membrane composition by
decreasing arachidonic acid concentration is the finding
that the decline in spatial learning, like the impairment in
LTP, is coupled with decreased arachidonic acid (AA)
concentration in hippocampus (358). Yet another factor
that correlates with the decline in spatial learning with
age is circulating glucocorticoid concentration (67, 442);
the coupling between these factors was recently consoli-
dated by the finding that chronic antidepressant treat-
ment abrogated the age-related decline in spatial learning
and the attendant increase in glucocorticoids (655).

In the past it was considered that cell loss in the aged
brain may be responsible for impairment of spatial learn-
ing, but it has been argued that when analysis of neuronal
number is undertaken using newer stereological tech-
niques no age-related cell loss is recorded in hippocam-
pus (508) or entorhinal cortex (411). However, in another
study it was shown that aged animals that exhibited an
impairment in spatial learning had lower hippocampal
neuron densities compared with young animals and aged
animals that performed well in spatial learning tasks
(405). Using a different approach to analysis of cell via-
bility in the aged brain, we observed that the age-related
impairment in LTP was associated with evidence of apo-
ptosis in hippocampus; specifically, activation of the so-
called cell death enzyme, caspase-3, was enhanced, and
TUNEL staining, which identifies nicked DNA, a hallmark
of cell death, was increased (380).

There is a general agreement that maintenance of
LTP is markedly impaired with age (41, 43, 129, 307, 308,
356, 392, 441, 442), but although some groups have ob-
served an impairment in induction (356, 392, 441), others
(e.g., Refs. 41, 146) have not. There is some variability in
the extent of the age-related deficit in LTP with profound
effects observed in some rats and little impairment in
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others (356, 392). One might argue that such variability is
to be expected and parallels performance of aged animals
in spatial learning tasks (e.g., Refs. 358, 507, 508).

Clearly a major goal in neuroscience is to identify the
underlying cause of the age-related deficit in LTP, but this
is not trivial given the array of changes that have been
documented in the aged brain. Many of these changes
may be a consequence of the alterations in membrane
characteristics that might be expected to impact on mem-
brane function, and among these is the age-related in-
crease in accumulation of ROS (102, 664; Fig. 4) arising
from an increase in SOD activity in the absence of con-
comitant changes in activities of glutathione peroxidase
or catalase (87, 191, 466, 467). Increased ROS accumula-
tion is closely coupled with increased concentration of
IL-1�, and these changes have been correlated with defi-
cits in LTP in the aged animal (400, 441, 442, 467, 627,
628). The consequences of a chronic increase in ROS
production are profound and lead to lipid peroxidation,
which in turn results in a decrease in the membrane
concentration of polyunsaturated fatty acids, altering
membrane fluidity (353, 355, 441, 443). A change in mem-
brane composition and fluidity is likely to impact on
receptor function; one example of receptor dysfunction is
the age-related decrease in NMDA receptor binding and
the accompanying changes in cell signaling (69, 92, 122,
249, 291, 365, 599). As described above, NMDA receptor
activation initiates a cascade of cellular reactions that is
thought to lead to maintenance of LTP; key among these
changes is increased intracellular calcium concentration.
Although there are no data explicitly indicating that cal-
cium influx through the NMDA-coupled calcium channel
is altered with age, there is a great deal of evidence
indicating that calcium homeostatic mechanisms are dis-
rupted (304, 306), and this has been explained variously
by a decrease in calcium channel number and activity
(202, 630) or a decrease in calcium transport or uptake
across the mitochondrial membrane. Because signaling
molecules such as PKC and CaMKII are calcium sensitive
or calcium-dependent, it is not surprising that activation
of both is decreased with age (434). However, age is also
associated with decreased activation of tyrosine kinase
(434), ERK (397), and PI 3-kinase (366a), all of which have
been linked with expression of LTP (see above).

One consistent change that accompanies LTP in den-
tate gyrus, although not necessarily other hippocampal
areas, is an increase in transmitter release, and data from
several experiments have indicated that the age-related
decrease in LTP is coupled with a decrease in depolariza-
tion-induced glutamate release (356, 392, 397–400). An
age-related decline in the expression of synaptophysin, an
important synaptic vesicle protein involved in transmitter
release, has been reported (435, 538) and may contribute
to the decrease in transmitter release. However, evidence
suggests that a significant factor may be the increase in

IL-1�, which is inversely correlated with glutamate re-
lease (283, 443) and LTP (352a, 629) and also with con-
centration of polyunsaturated fatty acids in hippocampal
membrane (353, 355).

Because the more persistent components of LTP
rely on protein synthesis and probably morphological
changes, it is significant that an age-related decrease in
protein synthesis has been reported (197, 284, 435), and
this has been identified as a possible factor that contrib-
utes to the decrease in neuronal density (405). This de-
crease in neuronal density (305) is coupled with a de-
crease in synaptophysin expression (435, 538) and synap-
tic density (e.g., Refs. 58, 59, 128, 538, 550). In addition,
while LTP has been associated with an increase in the
number of nonperforated synapses (188), aging is associ-
ated with a reduced number of such synapses (187). More
recently, it was established that the number of synaptic
contacts per neuron is reduced in aged, compared with
young, animals (190), while a decrease in synapses with
multiple, completely partioned, transmission zones was
observed in aged rats that exhibited impaired LTP (189).

Data from several studies have indicated that the
impairment in LTP in aged rats is associated with a de-
crease in membrane polyunsaturated fatty acids, specifi-
cally AA and docosahexanoic acid (DHA), and treatment
of aged rats with either of these polyunsaturated fatty
acids has been shown to reverse the age-related decrease
in LTP and the decrease in membrane concentration of
the fatty acid (392, 397–400). While restoration of mem-
brane properties is one mechanism by which fatty acids
act to reverse age-related impairments, AA and DHA have
been shown to modulate hippocampal synaptic plasticity;
for example, AA induces potentiation of the synaptic
response (460, 643), and both DHA and AA potentiate
NMDA-induced responses (457). In support of the idea
that these fatty acids may have a specific role in signaling
are the observations 1) that the attenuation of LTP, which
is associated with inhibition of phospholipase A2, is res-
cued by AA and DHA (174) and 2) that AA-induced facil-
itation of the synaptic response in CA1 occluded tetanus-
induced LTP (460).

In parallel with the facilitatory effect of DHA on LTP,
maze learning has been reported to be enhanced in DHA-
treated mice (327, 328) or rats treated with the AA pre-
cursor �-linoleic acid (143). Similarly, chronic treatment
with DHA that increased cortical and hippocampal con-
centration of the fatty acid also improved reference mem-
ory in young rats (183). Consistent with this, DHA defi-
ciency has been associated with decreased exploratory
behavior, compromises in working memory, spatial learn-
ing in the Morris water maze, and also olfactory cued
reversal learning (86, 152, 540, 633). Indeed, the impair-
ment in maze learning in aged mice (328), as well as the
age-related increase in the number of errors in working
and reference memory, as assessed in the radial arm
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maze, were associated with decreased DHA (183), and in
all cases DHA treatment improved performance. Interest-
ingly, DHA has also been shown to attenuate low-fre-
quency stimulation (LFS) induced LTD in CA1 in vitro
(658). The age-related decrease in AA has also been cou-
pled with cognitive deficits (622). Although it is likely that
the primary effect of deficiency in polyunsaturated fatty
acids is a consequence of its effect on the membrane, it
has been reported that NGF is decreased in parallel with
DHA deficiency (246); interestingly, decreased NGF con-
centration has been coupled with deficits in spatial learn-
ing and LTP in the aged animal (see above). Thus, in
general terms, the parallel impairments in learning and
LTP, which are associated with reduced concentrations of
DHA, represent a striking parallel between LTP and cer-
tain forms of learning/memory.

The impairment in LTP in aged rats that was associ-
ated with increased ROS accumulation was also associ-
ated with a decrease in vitamin E concentration; both AA
and DHA have been shown to have some antioxidant
effects (355), and their beneficial effects in aged rats may
be partly attributable to this, while the beneficial effects
of lipoic acid have also been attributed to its antioxidant
properties (354). Thus lipoic acid reversed the age-related
increase in ROS accumulation and also reversed the im-
pairment in LTP in aged rats (399). Lipoic acid has also
been reported to improve performance of aged mice in an
open-field memory test (592, 593), and this effect has been
coupled with its ability to alleviate the age-related deficit
in NMDA receptor-associated signaling (592, 593). Consis-
tent with the idea that accumulation of ROS may trigger
changes leading to the deficit in LTP are the findings that
vitamin E deficiency resulted in attenuation of LTP (651),
while vitamin E treatment, like fatty acid treatment, re-
versed the age-related impairment in LTP (441). It was
recently reported that dietary manipulation with antioxi-
dants reversed the age-related impairment in spatial
learning; this change was coupled with a decrease in ROS
accumulation and with enhanced vitamin E concentration
in hippocampus (268). Interestingly, vitamin E supple-
mentation in apolipoprotein E-deficient mice for 12 mo
also led to a significant improvement in their performance
in spatial learning (626).

E. Cognition and Inflammation

Neurochemical parameters involved in learning and
memory processes are sensitive to immune-active mole-
cules, and similarly, brain areas, for example, the hip-
pocampus, have also been shown to be sensitive to these
same molecules. For example, several reports have indi-
cated that cognitive function is disrupted by neuronal
inflammation, for example, following IL-1� or LPS treat-
ment (see above). Significantly, deficits in cognitive func-

tion associated with inflammation have also been re-
ported in human subjects receiving cytokine treatment
for cancer and hepatitis.

1. IL-1�, LTP, learning, and memory

An increase in hippocampal IL-1� concentration has
been consistently shown to inhibit LTP. Thus intracere-
broventricular injection of IL-1� inhibited LTP in per-
forant path-granule cell synapses (283, 353, 441, 442, 467;
Fig. 4), and this finding is supported by data from several
experiments that were conducted in vitro and that re-
vealed that application of IL-1� to hippocampal slices
inhibited LTP in dentate gyrus (118), CA1 (54), and CA3
(279). Consistently, LTP has been shown to be impaired in
several circumstances in which IL-1� concentration in
hippocampus is increased, for example, in aged (380, 442,
441, 627) and stressed (442, 629) rats, rats treated with
LPS (627), and rats exposed to �-irradiation (A. M. Lynch,
M. Moore, S. Craig, P. E. Lonergan, and M. A. Lynch,
unpublished data; see Fig. 5). In parallel with the inhibi-
tory effect of IL-1� on LTP is the finding that IL-1� exerts
an inhibitory effect on various hippocampal-dependent
forms of learning. For instance, contextual fear condition-
ing is inhibited by IL-1�, while IL-1ra suppresses the
inhibitory effect of stressors, for example, social isola-
tion, on this form of conditioning (368, 502–504). Immu-
nodeficiency virus-1 coat protein gp120 also impairs con-
textual fear conditioning, and its effect is also inhibited by
IL-1ra (502). Unlike contextual fear conditioning, audito-
ry-cue fear conditioning is a hippocampal-independent
form of learning, and although it is impaired by gp120, this
form of learning does appear not to be sensitive to IL-1�
(502). Further evidence of a role for IL-1�-induced inhi-
bition in hippocampal-dependent learning paradigms are
the findings that it inhibits learning in the Morris water
maze (181, 192, 469) and that it mediates the Legionella

pneumophilia-induced impairment in spatial learning
navigational learning (193).

Injection of LPS induces an increase in IL-1� expres-
sion in hippocampus (342, 627), and consistent with the
findings that increased IL-1� negatively correlates with
maintenance of LTP is the observation that LPS inhibits
LTP in perforant path-granule cell synapses (462, 627).
Like IL-1�, LPS treatment has also been shown to inhibit
spatial learning (561), whereas it led to a deficit in con-
textual, but not auditory-cue, fear conditioning in rats.
The LPS-induced effect was inhibited by IL-1ra, indicating
that it was mediated by IL-1� (503). Performance in pas-
sive avoidance tasks and in the elevated maze is dimin-
ished in both aged and LPS-treated mice; chronic admin-
istration with nonsteroidal anti-inflammatory agents has
been shown to restore function (255), which provides
support for the idea that inflammation in brain tissue
leads to deficits in learning/memory. Similarly a recent
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study has shown that the LPS-induced impairment in
spatial memory in young rats was suppressed by a novel
nonsteroidal anti-inflammatory drug, NO-flurbiprofen, but
this was not the case in aged rats (218). Similarly, the
LPS-induced impairment in LTP, as well as the associated
activation of microglia, was inhibited by treatment with
NO-flurbiprofen (217).

2. What signaling cascades are activated

by IL-1� and ROS in hippocampus?

If IL-1� and/or ROS are responsible for the impair-
ment in LTP associated with age and various stresses,
then it is appropriate to consider the downstream conse-
quences of increases in IL-1� concentration and ROS
accumulation in hippocampus. Among the changes that
have been consistently observed is an increase in activa-
tion of the mitogen-activated protein kinases, c-jun NH2-
terminal kinase (JNK) or stress-activated protein kinase
(SAPK), and p38 in hippocampus of LPS- and IL-1�-
treated rats (627, 628) and aged rats (380, 467); indeed, the
age- and IL-1�-induced increases in JNK activation are

paralleled by an increase in JNK activation due to H2O2

injection (Figs. 5 and 6). Recent studies have indicated
that similar increases in activation of these kinases occur
in hippocampus of rats exposed to whole body irradiation
(341). In all cases, LTP was impaired, and the evidence
indicated that there was a negative correlation between
JNK and p38 activity and LTP. Recent evidence has indi-
cated that IL-1-associated signaling cascades are upregu-
lated with age; thus increased expression of IL-1 type I
receptor (IL-1R1) and activation of IL-1 receptor-associ-
ated kinase (IRAK) may contribute to the increased trans-
duction of the IL-1� signal leading to enhanced activation
of p38 and JNK (352a). Significantly, we have recently
found evidence of age-related cell death in hippocampus
(352a) and entorhinal cortex (380), and the findings sug-
gest that activation of stress-activated kinases plays a key
role in triggering these changes. It is significant that the
IL-1�-induced impairment in LTP was coupled with in-
creased activation of p38 and JNK and that treatment with
vitamins E and C reversed both the impairment in LTP
and the enhancement in activity of the kinases (629). We

FIG. 5. LTP in perforant path-granule
cell synapses was markedly attenuated in
urethane-anesthetized aged, compared with
young, rats (A) and age-related increases in
both interleukin (IL)-1� concentration (B)
and reactive oxygen species accumulation
(C) were observed in hippocampal homog-
enate (P � 0.05; Student’s t-test for un-
paired samples). LTP was also attenuated in
rats treated intracerebroventricularly with
IL-1� (D) or H2O2 (E). Activation of JNK
was significantly increased in hippocampal
tissue prepared from aged, compared with
young, rats [F; IL-1�-treated compared with
saline-treated rats (G) and H2O2-treated
compared with saline-treated rats (H); P �
0.05; Student’s t-test for independent sam-
ples; compare lane 2 (experimental) with
lane 1 (control) in the sample immuno-
blots].
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have found that IL-1� inhibits glutamate release in vitro
and that release in hippocampal tissue prepared from
IL-1�-treated rats is also decreased; recent evidence sug-
gests that the effect of IL-1� is mediated through activa-
tion of p38 and JNK, since inhibitors of these kinases
abrogate the IL-1�-induced attenuation of release. In par-
allel, we have found that the inhibitory effect of IL-1� on
release and LTP is suppressed by pretreating IL-1�-in-
jected rats with SB203580 (285a). Interestingly, the age-
related impairment of LTP and the accompanying in-
creases in IL-1� concentration and JNK and p38 activation
are all reversed by treatment of rats with the n-3 polyun-
saturated fatty acid DHA (628) and its precursor, eicosa-
pentaneoic acid (380).

3. LTP, cognitive function, and �-amyloid

Several hallmarks of oxidative stress and inflamma-
tion have been shown to be present in Alzheimer’s disease
(AD; Refs. 377, 576). Because of this, it has been sug-
gested that chronic treatment with LPS results in changes
that mirror those of AD, and therefore, it has been useful
as a model of the disease. Among the effects of LPS
infusion are activation of astrocytes and microglia partic-
ularly in hippocampus and temporal lobe, increased
proinflammatory cytokines like IL-1� and tumor necrosis
factor-�, increased amyloid precursor protein (APP)
mRNA, and evidence of neuronal degeneration (216). Ev-
idence of oxidative stress has also been identified in
transgenic mouse models of AD (575), and this is accom-
panied by an increase in IL-1� concentration and �-amy-
loid deposition, both of which are attenuated by ibupro-
fen treatment (326). In these models, such changes have
been coupled with impairments in spatial learning (626),
and one model, which overexpresses human APP with
age, is associated with amyloid deposits and high concen-
trations of the mutant �-amyloid. These animals exhibit
memory deficits and deficits in LTP (97); indeed, the
appearance of �-amyloid aggregates coincided with the
first evidence of memory impairment (640). Similarly it
has been shown that intrahippocampal injection of
�-amyloid led to aggregation of amyloid material and
evidence of inflammation several weeks after treatment,
and at this time, there was evidence of deficits in LTP and
in working memory (589).

4. Gene expression and age

In contrast to the profound age-related changes in
several signaling pathways that are triggered by LTP (or
LTP stimulating protocols) in hippocampus, analysis of
several IEGs in tissue prepared from young and aged rats
revealed a surprising lack of change; indeed, the only
significant change was an age-related increase in c-fos

expression. In a parallel study in which expression of
c-fos and tissue plasminogen factor was assessed after

seizure activity, both IEGs were apparent in aged and
young rats, but the level of change and the response time
were compromised; in contrast, seizure-induced expres-
sion of microtubular-associated protein 1B was more
rapid and enhanced with age (553). However, in a recent
DNA microarray analysis of the aged brain, Prolla and
colleagues (316, 500) reported induction of certain IEGs,
specifically junB and c-fos. In addition, there was a
marked upregulation of several genes that are associated
with immune or inflammatory responses, including induc-
tion of several components of the complement cascade,
while upregulation of genes associated with the stress
response, for example, several heat shock proteins, was
observed. These findings are consistent with several re-
ports of inflammatory and stress-associated changes in
the aged brain.

VIII. LONG-TERM POTENTIATION AND

MEMORY: DO THEY SHARE

CELLULAR MECHANISMS?

If it is argued that the same set of synapses are
activated and modified in the same way by LTP and
spatial learning, then it follows that saturation of LTP
would impair learning (and vice versa). Several groups
have addressed this question by parallel analysis of spatial
learning and LTP. Some of these studies showed that
saturating LTP impaired spatial learning in two separate
learning tasks (94, 407, 429). These authors concluded
that both processes, LTP and spatial learning, relied on
the same cellular mechanisms, and the data were consid-
ered to provide strong support for the proposal that LTP
was a model for at least some forms of learning. However,
others (see Ref. 65) have failed to substantiate this find-
ing, although there was some indication in one study that
rats previously trained in the water maze exhibited a
small reduction in ability to sustain LTP (259). As pointed
out (see Refs. 65, 258), there are several reasons why
saturating LTP might not block learning; LTP may have
been induced in the wrong pathway, in too few fibers, or
to a lesser extent than is required to block subsequent
learning. Indeed, it is known that stimulation at a single
site does not saturate LTP in all perforant path-granule
cell synapses (44), and it has also been suggested that LTP
saturation would need to be complete to block learning
since learning requires synaptic modification in a rela-
tively small fraction of hippocampal tissue (428). Data
from a recent study have added a new dimension to these
deliberations; it was shown that LTP in CA1 of conscious
rats was persistently reversed when these rats were al-
lowed to explore a novel (nonstressful) environment; the
authors reported that theta activity was enhanced during
reversal and proposed that this may induce depotentia-
tion in the recently potentiated synapses (653). These
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findings indicate that data obtained from the “classical”
saturation experiments may be confounded by coexis-
tence of potentiation and depotentiation of synaptic re-
sponses at specific synapses in a given area.

In addition to these data, it is appropriate to reflect
on some of the evidence which indicates that similar
cellular/molecular mechanisms are responsible for spatial
learning (specifically performance in the Morris water
maze) and for maintenance of LTP. For example, both are
associated with certain biochemical changes such as in-
creased glutamate release, inositol phospholipid turnover
(393), and activation of several kinases, for example, PKC
and ERK (Fig. 6). Activation of IEGs and transcription
factors, increased protein synthesis, alterations in neuro-
trophin expression, and alterations in calcium handling by
cells have also been reported. In addition, both LTP and
spatial learning induce increases in BDNF concentration
in dentate gyrus, increased KCl-stimulated release of
BDNF, and increased TrkB phosphorylation (199; Fig. 6)
which may contribute to the observed changes in ERK
activation. Further indirect support for the view that LTP
may be a biological substrate for some forms of learning
is the significant body of evidence which indicates that
both spatial learning and LTP are compromised in
stressed rats and aged rats (see above). However, one of
the most frequently quoted examples is that both are
inhibited by AP5 (425), and recent work has elaborated on
this finding. It was shown that AP5 only impairs spatial
learning in task-naive animals, while subjects pretrained
in a spatial task are resistant to the effect of AP5 (430,
478). NMDA antagonists, AP5 and NPC17742, blocked

LTP but failed to block spatial learning in pretrained rats,
suggesting that the relationship between LTP and spatial
learning is not direct and raising questions relating to
the precise role of NMDA receptor activation in spatial
learning.

Is it reasonable to suggest that LTP is a model for
learning and/or memory? There is no doubt that consoli-
dation of memory requires some form of synaptic remod-
eling, and this fundamental requirement is at the heart of
the idea that LTP, which also relies on synaptic remodel-
ing, might replicate the cellular changes that occur during
memory formation. This idea is supported by a great deal
of circumstantial evidence. First-order support includes
the fact that LTP is robustly supported by the major
afferent pathways in the hippocampus, an area of the
brain with a profoundly important role to play in memory
formation, and that certain properties of LTP (coopera-
tivity, associativity, and specificity) are precisely the
properties that might be anticipated as important in con-
solidation of memory. Second-order support is provided
by an enormous body of data which suggests that certain
forms of memory invoke stimulation of synaptic events
that play a role in the establishment of LTP, and this
includes evidence that certain forms of memory are in-
hibited by agents that also inhibit LTP. However, it has to
be considered that even when the conscious animal is
used in the analysis of LTP (and therefore multiple inputs
may be activated), recordings are made from specific
populations of cells in response to a specific input from a
specific collection of fibers. In contrast to this relatively
well-controlled situation, consolidation of memory during

FIG. 6. Stressors (e.g., behavioral, oxidative, and
irradiation as well as age) all lead to increased IL-1�
concentration in brain, specifically hippocampus,
which in turns stimulates stress-activated protein ki-
nases, JNK and p38. Evidence indicates that these
changes result in cell dysfunction and consequently
impacting on synaptic function.
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TABLE 5. Transgenic mice, LTP, and spatial learning/memory

Mutant LTP Spatial Learning/Memory Reference No.

Glutamate receptors NMDA-R in CA1 absent LTP in CA1 impaired Impaired spatial learning 617, 618
NMDA�1 subunit knockout LTP in DG impaired No details 385, 539
Point mutation in glycine

binding site of NMDA-R
Impaired spatial learning 287

Overexpression of NR2B LTP in CA1 enhanced Enhanced spatial learning 605
Overexpression of NR2D LTP in CA1 impaired Spatial learning normal 470
mGluR5 knockout LTP in CA1, DG impaired Impaired spatial learning 263, 348
mGluR2 knockout LTP in CA1 enhanced Reduced exploration:

therefore effect on spatial
learning/memory
undetermined

263, 348

GluR6 knockout LTP in DG unaffected LTP
in mf-CA3 impaired

Spatial learning normal 112, 632

Other receptors 5-HT (1A) receptor knockout LTP in CA1 unaffected Impaired spatial learning 543
5-HT-3C receptor knockout LTP in DG impaired Impaired spatial learning 223
PAF receptor knockout LTP in DG impaired No details 98
TNF receptor knockout LTP in CA1 unaffected No details 15
Nociceptin knockout LTP in CA1 enhanced Enhanced spatial learning 461
Mu-opioid receptor knockout LTP in DG impaired LTP

in CA1 unaffected
No details 386

Muscarinic (M1) receptor
knockout

LTP in CA1 impaired Nonmatching to sample
working memory impaired

22

TrkB knockout LTP in CA1 impaired Impaired spatial learning 419
Signaling Expression of inhibitory PKA

regulatory subunit, i.e.,
R(AB) mice

LTP in CA1 impaired Impaired spatial learning 3, 650

C�1 and R1� PKA mutants LTP in mf-CA3 impaired LTP
in CA1 unaffected

Spatial learning unaffected 237

AC1 � AC8 knockout LTP in CA1 impaired Impaired spatial memory 649
�CaMKII knockout LTP in CA1 impaired Impaired spatial memory 194, 230, 570, 572
Dendritic �CaMKII

“knockout”
LTP in CA1 impaired Impaired spatial memory 418

Expression of calcium-
independent CaMKII

LTP in CA1 impaired Impaired spatial memory 388

Expression of CaMKII-Asp-
286

LTP in CA1 impaired Impaired spatial memory 32

Expression of inhibited
�CaMKII

LTP in CA1 impaired Impaired spatial learning 150

CaMKIV/Gr knockout LTP in CA1 impaired Spatial learning unaffected 232
Expression of dominant

negative CaMKIV
LTP in CA1 impaired Impaired spatial learning 274

PKC-� knockout LTP in CA1 impaired Impaired spatial learning 4, 5
ERK1 knockout LTP in CA1 unaffected Spatial learning unaffected 559
Targeted disruption of � and

� CREB
LTP in CA1 impaired Impaired spatial learning 74

Fyn knockout LTP in CA1 impaired Impaired spatial learning 205, 295
c-kit receptor tyrosine kinase

knockout
LTP in mf-CA3 reduced LTP

in CA1 unaffected
Impaired spatial learning 276

EphB2 knockout LTP in CA1 and DG impaired 224
SynGAP knockout LTP in CA1 impaired Impaired spatial learning 297
PTP� knockout LTP in CA1 and CA3

impaired
Impaired spatial learning 621

Targeted disruption of Zif268 LTP in DG impaired Impaired spatial memory 267
IP3R1 knockout LTP in CA1 enhanced No details 173
IP3 3-kinase knockout LTP in CA1 enhanced; LTP

in DG unaffected
Spatial learning unaffected 271

RyR3 knockout LTP in CA1 enhanced Enhanced spatial learning 178
RyR3 knockout LTP in DG and CA1

unaffected
Impaired spatial learning 38

ApoE knockout LTP in CA1 impaired No details 468, 624
Presynaptic proteins Complexin II knockout LTP in CA1 impaired No details 602

Synaptophysin �
synaptogyrin knockout

LTP in CA1 impaired No details 256

Overexpression of GAP43 LTP in DG enhanced Enhanced spatial learning 532
Rab3A (RIM1� subunit)

knockout
LTP in mf-CA3 impaired No details 91

Synapsin knockout LTP in CA1 and CA3
unaffected

No details 580
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training involves activation of numerous modalities which
are likely to translate into potentially confounding activa-
tion of several pathways and brain areas. Similarly, it is
widely acknowledged that there are multiple forms of
memory, and there are multiple facets of memory even
when consideration is limited to a particular form of
memory, for example, spatial memory. Consequently, it
has to be acknowledged that reduction of such a complex
modality to the form of plasticity that is LTP is simplistic.
The converse of this is that there are multiple forms of
LTP induced by different paradigms in different synaptic
connections and under different experimental conditions,
and consequently, it is questionable whether LTP can be
considered as a unified construct, without specifying pre-
cise experimental conditions.

Despite these drawbacks, it is likely that studies
which assess hippocampal LTP and spatial memory will
continue to provide valuable evidence in pursuit of the
answer to the ultimate question. For instance, it may be
valuable to exploit the fact that aged rats fall into cate-
gories that range from profoundly impaired in spatial
learning (and also LTP, at least in dentate gyrus) to those
that are comparable to young rats in terms of perfor-
mance in spatial learning tasks and in terms of sustaining
LTP, to ask additional questions. Similarly, further devel-
opment in design of arrays of electrodes to allow chronic
implantation in several synaptic connections in series,

while assessing performance in particular tasks are likely
to provide further insight. In the past decade or so, wid-
ening the question to consider the relationship between
LTP and forms of learning other than spatial has led to
significant developments specifically in terms of fear con-
ditioning; it is likely that exploitation of this approach will
provide further clarification of the fundamental issues.

Since the early 1980s, a major focus of several groups
has been to identify the cell signaling cascades that might
underpin consolidation of memory and/or expression of
LTP, and consequently, there has been a mushrooming of
data implicating a huge array of signaling pathways in
either or both. Sifting through the data, one must con-
clude that a consensus has emerged indicating that both
are calcium dependent, CaMKII dependent, and protein
synthesis dependent, and in the past few years, some
inspirational studies from Malinow’s group (323, 564, 565)
have identified one particularly significant consequence
of the increase in intracellular calcium and activation of
CaMKII, i.e., recycling of AMPA receptors. The results of
these elegant studies not only have implications for syn-
aptic plasticity but identify a fundamentally important
process in neurobiology. Analysis of the signaling path-
ways that accompany LTP and learning and/or memory
has also benefited from the application of advances in
biogenetics to neurobiology. Indeed, the question of par-
allels between LTP and spatial learning has come into

TABLE 5—Continued

Mutant LTP Spatial Learning/Memory Reference No.

Structural proteins NCAM L1 knockout LTP in CA1 unaffected Impaired spatial learning 63, 165
NCAM knockout LTP in CA1 impaired 437
Telencephalon-specific cell

adhesion molecule
knockout

LTP in CA1 enhanced Enhanced spatial learning 448

Integrin-associated protein
knockout

LTP in DG impaired Impaired memory retention 96

Tenascin-R knockout LTP in CA1 impaired Spatial learning unaffected 154, 537
Thy-1 knockout LTP in CA1 unaffected LTP

in DG impaired
Spatial learning unaffected 463

Brevican knockout LTP in CA1 enhanced Learning/memory unaffected 77
LIM kinase 1 knockout LTP in CA1 enhanced Impaired spatial learning 410

Other proteins Galanin knockout LTP unaffected Deficit in object recognition
memory

383

Overexpression of galanin LTP in DG impaired Impaired spatial learning 115
Neuropsin knockout LTP unaffected Spatial learning unaffected 119
Calbindin D-deficient mice LTP in CA1 impaired 269, 422
Neurogranin knockout LTP in CA1 impaired Impaired spatial learning 482
Somatostatin knockout LTP unaffected Enhanced spatial learning 148
Acid-activated ion channel

knockout
LTP in CA1 impaired Impaired spatial learning 639

S100B knockout LTP in CA1 enhanced Enhanced spatial memory 459
GLT-1 knockout LTP in CA1 impaired 277
Overexpression of EC-SOD LTP in CA1 impaired LTP

in CA3 unaffected
Impaired fear conditioning 180, 610

eNOS knockout LTP in CA1 impaired Enhanced spatial learning 169, 646
Protein phosphatase

inhibitor-1 knockout
LTP in CA1 unaffected LTP

in DG impaired
Spatial memory unaffected 18

t-PA knockout LTP in CA1 impaired Impaired spatial memory 21, 81
Overexpression of t-PA LTP in CA1 enhanced Enhanced spatial learning 364
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sharp focus with these important developments. Thus, in
addition to identifying a role for certain signaling mole-
cules, the study of transgenic animals has provided evi-
dence indicating that the mechanisms that underpin LTP
are also important in supporting synaptic modifications
that underlie spatial learning. Table 5 lists the findings of
several studies in which transgenic animals were as-
sessed, and in many cases, the evidence indicates that
both LTP and spatial learning are disrupted in certain
transgenic animals including knockout mice, for example,
fyn, CaMKII, CREB, PKC, and some glutamate receptor
subtypes. Similarly, certain experimental models exhib-
ited neither impairment in spatial learning nor LTP in
CA1, for instance, thy-1 knockout (463) and mGluR5 (348)
knockout mice. In some cases, LTP was disrupted in one
hippocampal pathway but not another, for instance, in
dentate gyrus, but not CA1 in thy-1 knockout mice; this
lack of concordance between disruption of spatial learn-
ing and LTP in CA1 has been interpreted as an indication
that a close coupling between LTP and spatial learning
may exist in some, but not all, synaptic connections. It has
to be concluded also that, although exploitation of genetic
techniques provides a very powerful tool, using similar
genetic manipulations may yield results that are not en-
tirely reproducible from laboratory to laboratory (see
Table 5 for some examples). These apparently inconsis-
tent findings illustrate several of the difficulties in the
literature and highlight certain cautionary points. First, it
is clear that LTP may be sustained in one synaptic path-
way and not in another, bringing into sharp focus the
problem that arises when data from one area are used to
extrapolate to another. Second, it suggests that different
synaptic connections may utilize different signaling mol-
ecules. Third, it emphasizes the fact that LTP may be
sustained under one set of experimental conditions (e.g.,
in vitro or in vivo, in the awake animal or in the anesthe-
tized animal), but extrapolation to other experimental
conditions may be inappropriate. Finally, identifying the
precise behavioral measure and the specific form of LTP
(E-LTP or L-LTP) is imperative and may be of importance
in reconciling apparently conflicting findings. The critical
question is whether LTP represents a biological substrate
for learning and/or memory, and the challenge is to design
an experiment that can specifically address this question.
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